Skip to main content

Multithreading in Laser Scanning Data Processing

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Laser scanning is one of the modern and actively-developing remote sensing techniques, resulting in a point cloud, containing a set of different attributes for each point. One of the positive features of laser scanning is the high accuracy of the results; this is achieved by obtaining a large number of points describing the scanned object. In some circumstances, point clouds may contain billions of points, which require hundreds of gigabytes to be stored. Loading and processing of such huge data require large time and computational resources. The first problem is such massive point clouds initial downloading and pre-processing. The standard approach is the sequential processing of laser scanning results, which requires a significant amount of time. In this paper, we have conducted research and testing of various approaches for loading and processing of point clouds, one of the proposed approaches is the use of multithreading to significantly reduce time. The guideline for improvement of processing of laser scanning point clouds with use of multithreading is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puente, I., González-Jorge, H., Martínez-Sánchez, J., Arias, P.: Review of mobile mapping and surveying technologies. Measurement 46(7), 2127–2145 (2013)

    Article  Google Scholar 

  2. Guan, H., Li, J., Cao, S., Yu, Y.: Use of mobile LiDAR in road information inventory: a review. Int. J. Image Data Fusion 7(3), 219–242 (2016)

    Article  Google Scholar 

  3. Badenko, V., Zotov, D., Fedotov, A.: Hybrid processing of laser scanning data. In: E3S Web of Conferences – EDP Sciences, vol. 33, article number 01047 (2018)

    Article  Google Scholar 

  4. Dore, C., Murphy, M.: Current state of the art historic building information modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 185–192 (2017)

    Article  Google Scholar 

  5. Vosselman, G., Coenen, M., Rottensteiner, F.: Contextual segment-based classification of airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 128, 354–371 (2017)

    Article  Google Scholar 

  6. Tomljenovic, I., Höfle, B., Tiede, D., Blaschke, T.: Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sens. 7(4), 3826–3862 (2015)

    Article  Google Scholar 

  7. Penner, M., Woods, M., Pitt, D.: A comparison of airborne laser scanning and image point cloud derived tree size class distribution models in boreal Ontario. Forests 6(11), 4034–4054 (2015)

    Article  Google Scholar 

  8. Heo, J., Jeong, S., Park, H.-K., Jung, J., Han, S., Hong, S., Sohn, H.-G.: Productive high-complexity 3D city modeling with point clouds collected from terrestrial LiDAR. Comput. Environ. Urban Syst. 41, 26–38 (2013)

    Article  Google Scholar 

  9. Pu, S., Rutzinger, M., Vosselman, G., Elberink, S.O.: Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS J. Photogramm. Remote Sens. 66(6), S28–S39 (2011)

    Article  Google Scholar 

  10. Badenko, V., Fedotov, A., Vinogradov, K.: Algorithms of laser scanner data processing for ground surface reconstruction. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 397–411. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_28

    Chapter  Google Scholar 

  11. Son, H., Kim, C., Kim, C.: Fully automated as-built 3D pipeline extraction method from laser-scanned data based on curvature computation. J. Comput. Civ. Eng. 29(4), B4014003 (2014)

    Article  MathSciNet  Google Scholar 

  12. Guo, B., Li, Q., Huang, X., Wang, C.: An improved method for power-line reconstruction from point cloud data. Remote Sens. 8(1), 36 (2016)

    Article  Google Scholar 

  13. Hichri, N., Stefani, C., De Luca, L., Veron, P., Hamon, G.: From point cloud to BIM: a survey of existing approaches. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 40(5W2), 343–348 (2013)

    Article  Google Scholar 

  14. Barazzetti, L.: Parametric as-built model generation of complex shapes from point clouds. Adv. Eng. Inform. 30(3), 298–311 (2016)

    Article  Google Scholar 

  15. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings—literature review and future needs. Autom. Constr. 38, 109–127 (2014)

    Article  Google Scholar 

  16. Badenko, V., Fedotov, A., Zotov, D.: Extracting features from laser scanning point cloud. In: SHS Web of Conferences, vol. 44, article number 00013 (2018)

    Article  Google Scholar 

  17. Badenko, V., Volgin, D., Lytkin, S.: Deformation monitoring using laser scanned point clouds and BIM. In: MATEC Web of Conferences, vol. 245, article number 01002 (2018)

    Article  Google Scholar 

  18. Liu, X., Meng, W., Guo, J., Zhang, X.: A survey on processing of large-scale 3D point cloud. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds.) Edutainment 2016. LNCS, vol. 9654, pp. 267–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40259-8_24

    Chapter  Google Scholar 

  19. Kukko, A., Kaartinen, H., Hyyppä, J., Chen, Y.: Multiplatform mobile laser scanning: usability and performance. Sensors 12(9), 11712–11733 (2012)

    Article  Google Scholar 

  20. Murphy, M., McGovern, E., Pavia, S.: Historic building information modelling-adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote Sens. 76, 89–102 (2013)

    Article  Google Scholar 

  21. Axelsson, P.: Processing of laser scanner data - algorithms and applications. ISPRS J. Photogramm. Remote Sens. 54(2–3), 138–147 (1999)

    Article  Google Scholar 

  22. Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques. Autom. Constr. 19(7), 829–843 (2010)

    Article  Google Scholar 

  23. Zhang, J., Lin, X.: Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. Int. J. Image Data Fusion 8(1), 1–31 (2017)

    Article  MathSciNet  Google Scholar 

  24. Pfeifer, N., Mandlburger, G., Otepka, J., Karel, W.: OPALS - a framework for airborne laser scanning data analysis. Comput. Environ. Urban Syst. 45, 125–136 (2014)

    Article  Google Scholar 

  25. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks (RAID). SIGMOD Rec. 17(3), 109–116 (1988)

    Article  Google Scholar 

  26. Han, S.: Towards efficient implementation of an octree for a large 3D point cloud. Sensors 18(12), 4398 (2018)

    Article  Google Scholar 

  27. Vo, A.V., Laefer, D.F., Bertolotto, M.: Airborne laser scanning data storage and indexing: state-of-the-art review. Int. J. Remote Sens. 37(24), 6187–6204 (2016)

    Article  Google Scholar 

  28. LAS Specification, Version 1.4, Revision 13, 15 July 2013. http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf. Accessed 15 Mar 2019

  29. rapidlasso GmbH Homepage. https://rapidlasso.com/lastools/. Accessed 15 Mar 2019

  30. PDAL - Point Data Abstraction Library Homepage. https://pdal.io/. Accessed 15 Mar 2019

  31. Van Natijne, A.L., Lindenbergh, R.C., Hanssen, R.F., Lindenbergh, R.C., Hanssen, R.F.: Massive linking of PS-InSAR deformations to a national airborne laser point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42(2), 1137–1144 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Ministry of Education and Science of Russia within the framework of the Federal Program “Research and Development in Priority Areas for the Development of the Russian the Science and Technology Complex for 2014–2020” (project ID RFMEFI58417X0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Badenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badenko, V., Tammsaar, S., Beliaevskii, K., Fedotov, A., Vinogradov, K. (2019). Multithreading in Laser Scanning Data Processing. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics