Skip to main content

Adaptive Hierarchical Mesh Detail Mapping and Deformation

  • Conference paper
  • First Online:
  • 1353 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Abstract

In this work, we present a new method for controlled deformation and detail addition to 3d shapes represented as variable resolution meshes. The input data is a surface with arbitrary genus, represented by a polygonal mesh, and a set of parameters for edition control: positional information, the level of resolution, mesh features and direction of propagation of the deformation. An adaptive hierarchical mesh structure is constructed using an iterative feature-sensitive simplification method that concomitantly generates the parameterization of the mesh. The coarsest level of the representation defines the base domain which stores the original geometry via a local parameterization process. We apply local modifications to the base domain according to predefined functions; a noise function for details or any geometric deformation. In the sequel, the deformation of the base mesh is propagated to the original mesh. Our main contribution is a method that relies on the power of adaptive hierarchical structures to generate details with a greater degree of control by using a set of operators that explore the data structure properties as well as the information extracted and computed from the mesh.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barr, A.H.: Global and local deformations of solid primitives. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1984, pp. 21–30. ACM, New York (1984)

    Google Scholar 

  2. Bendels, G.H., Klein, R., Schilling, A.: Image and 3d-object editing with precisely specified editing regions. In: Ertl, T., et al. (eds.) Vision, Modeling and Visualisation 2003, pp. 451–460. Akademische Verlagsgesellschaft Aka GmbH, Heidelberg (2003)

    Google Scholar 

  3. Biermann, H., Martin, I.M., Zorin, D., Bernardini, F.: Sharp features on multiresolution subdivision surfaces. Graph. Models 64(2), 61–77 (2002)

    Article  Google Scholar 

  4. Botsch, M., Pauly, M., Rossl, C., Bischoff, S., Kobbelt, L.: Geometric modeling based on triangle meshes. In: ACM SIGGRAPH 2006 Courses, SIGGRAPH 2006. ACM, New York (2006). https://doi.org/10.1145/1185657.1185839

  5. Dekkers, E., Kobbelt, L.: Geometry seam carving. Comput. Aided Des. 46, 120–128 (2014)

    Article  Google Scholar 

  6. Derzapf, E., Grund, N., Guthe, M.: Parallel progressive mesh editing. In: Eurographics Symposium on Parallel Graphics and Visualization, Swansea, Wales, UK, 2014, Proceedings, pp. 33–40 (2014). https://doi.org/10.2312/pgv.20141082

  7. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 173–182. ACM, New York (1995)

    Google Scholar 

  8. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 99–108. ACM, New York (1996). https://doi.org/10.1145/237170.237216

  9. Kobbelt, L., Stamminger, M., Seidel, H.P.: Using subdivision on hierarchical data to reconstruct radiosity distribution 16(3), C347–C355 (1997). https://doi.org/10.1111/1467-8659.16.3conferenceissue.36, Proceedings Eurographics 1997

    Article  Google Scholar 

  10. Lagae, A., Lefebvre, S., Drettakis, G., Dutré, P.: Procedural noise using sparse gabor convolution. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH 2009, pp. 54:1–54:10. ACM, New York (2009)

    Google Scholar 

  11. Lee, A.W.F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: Maps: multiresolution adaptive parameterization of surfaces. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 95–104. ACM, New York (1998). https://doi.org/10.1145/280814.280828

  12. Loop, C.: Smooth Subdivision Surfaces Based on Triangles. Department of Mathematics, University of Utah (1987)

    Google Scholar 

  13. Maximo, A., Velho, L., Siqueira, M.: Adaptive multi-chart and multiresolution mesh representation. Comput. Graph. 38, 332–340 (2014). https://doi.org/10.1016/j.cag.2013.11.013

    Article  Google Scholar 

  14. Medioni, G., Tang, C.K., Lee, M.S.: Tensor voting: theory and applications. In: Proceedings of RFIA (2000)

    Google Scholar 

  15. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1985, pp. 287–296. ACM, New York (1985)

    Article  Google Scholar 

  16. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proceedings National Academy of Sciences, pp. 1591–1595 (1995)

    Google Scholar 

  17. Sorkine, O., Botsch, M.: Tutorial: interactive shape modeling and deformation. In: EUROGRAPHICS (2009)

    Google Scholar 

  18. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 351–358. ACM, New York (1995). https://doi.org/10.1145/218380.218473

  19. Velho, L.: Mesh simplification using four-face clusters. In: Shape Modeling International, pp. 200–208. IEEE Computer Society (2001)

    Google Scholar 

  20. Velho, L., Gomes, J.: Variable resolution 4-k meshes: concepts and applications. Comput. Graph. Forum 19(4), 195–212 (2000)

    Article  Google Scholar 

  21. Velho, L., Perlin, K., Biermann, H., Ying, L.: Algorithmic shape modeling with subdivision surfaces. Comput. Graph. 26(6), 865–875 (2002)

    Article  Google Scholar 

  22. Wang, S., Hou, T., Su, Z., Qin, H.: Diffusion tensor weighted harmonic fields for feature classification, pp. 93–98 (2011)

    Google Scholar 

  23. Yümer, M.E., Chaudhuri, S., Hodgins, J.K., Kara, L.B.: Semantic shape editing using deformation handles. ACM Trans. Graph. 34(4), 86 (2015)

    Article  Google Scholar 

  24. Zorin, D., Schröder, P.: Subdivision for Modeling and Animation. Technical report, SIGGRAPH 2000 (2000). Course Notes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno José Dembogurski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dembogurski, B.J., Montenegro, A.A. (2019). Adaptive Hierarchical Mesh Detail Mapping and Deformation. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics