Skip to main content

Modeling Energy Consumption Based on Resource Utilization

  • Conference paper
  • First Online:
  • 1381 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Abstract

Power management is an expensive and important issue for large computational infrastructures such as datacenters, large clusters, and computational grids. However, measuring energy consumption of scalable systems may be impractical due to both cost and complexity for deploying power metering devices on a large number of machines. In this paper, we propose the use of information about resource utilization (e.g. processor, memory, disk operations, and network traffic) as proxies for estimating power consumption. We employ machine learning techniques to estimate power consumption using such information which are provided by common operating systems. Experiments with linear regression, regression tree, and multilayer perceptron on data from different hardware resulted into a model with 99.94% of accuracy and 6.32 watts of error in the best case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Models were implemented in R (using RSNNS) and source code are available under the GNU General Public License version 3 at https://github.com/lucasvenez/ecm along with the employed dataset.

References

  1. Gartner: Gartner energy & utilities it summit 2007: an invitation only event. Technical report, Gartner, Dallas, EUA, September 2007

    Google Scholar 

  2. Cook, G.: How clear is your cloud? Catalysing an energy revolution. Technical report, Greenpeace International, Amsterdam, The Netherlands, April 2012. http://goo.gl/yd1FAS

  3. Gao, P.X., Curtis, A.R., Wong, B., Keshav, S.: It’s not easy being green. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012, pp. 211–222. ACM, New York (2012)

    Google Scholar 

  4. Koomey, J.: Growth in data center electricity use 2005 to 2010, vol. 1, p. 2010. Analytics Press, Oakland (2011)

    Google Scholar 

  5. Orgerie, A.-C., Assunção, M., Lefèvre, L.: Energy aware clouds. In: Cafaro, M., Aloisio, G. (eds.) Grids, Clouds and Virtualization. Computer Communications and Networks, pp. 143–166. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-85729-049-6_7

    Chapter  Google Scholar 

  6. Lee, Y., Zomaya, A.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60, 268–280 (2012)

    Article  Google Scholar 

  7. Song, Y., Wang, H., Li, Y., Feng, B., Sun, Y.: Multi-tiered on-demand resource scheduling for VM-based data center. In: CCGRID 2009, pp. 148–155 (2009)

    Google Scholar 

  8. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  9. Song, S., Su, C., Rountree, B., Cameron, K.W.: A simplified and accurate model of power-performance efficiency on emergent GPU architectures. In: 2013 IEEE 27th International Symposium On Parallel and Distributed Processing (IPDPS), pp. 673–686. IEEE (2013)

    Google Scholar 

  10. Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power management architecture of the 2nd generation intel®core™microarchitecture, formerly codenamed sandy bridge. In: Hot Chips (2011)

    Google Scholar 

  11. Contreras, G., Martonosi, M.: Power prediction for intel xscale® processors using performance monitoring unit events. In: Proceedings of the 2005 International Symposium on Low Power Electronics and Design, ISLPED 2005, pp. 221–226. IEEE (2005)

    Google Scholar 

  12. Joseph, R., Martonosi, M.: Run-time power estimation in high performance microprocessors. In: Proceedings of the 2001 International Symposium on Low Power Electronics and Design, pp. 135–140. ACM (2001)

    Google Scholar 

  13. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: methodology and empirical data. In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, p. 93. IEEE Computer Society (2003)

    Google Scholar 

  14. Bertran, R., Gonzalez, M., Martorell, X., Navarro, N., Ayguade, E.: Decomposable and responsive power models for multicore processors using performance counters. In: Proceedings of the 24th ACM International Conference on Supercomputing, pp. 147–158. ACM (2010)

    Google Scholar 

  15. Povoa, L.V., Bignatto Jr, P.W., Monteiro, C.E., Mueller, D., Marcondes, C.A.C., Senger, H.: A model for estimating energy consumption based on resources utilization. In: IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE Computer Society (2013)

    Google Scholar 

  16. Dusso, P.M.: A monitoring system for WattDB: an energy-proportional database cluster. Graduation thesis, Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, July 2012. http://goo.gl/8gheFW

  17. Dusso, P.M.: Energyagent (2012). https://github.com/pmdusso/energyagent

  18. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)

    Article  Google Scholar 

  19. Pazzani, M.J., Bay, S.D.: The independent sign bias: gaining insight from multiple linear regression. In: Proceedings of the Twenty-First Annual Meeting of the Cognitive Science Society, pp. 525–530 (1999)

    Google Scholar 

  20. Da Costa, G., Hlavacs, H.: Methodology of measurement for energy consumption of applications. In: 2010 11th IEEE/ACM International Conference on Grid Computing, pp. 290–297. IEEE (2010)

    Google Scholar 

  21. Waterland, A.: Stress (2014). http://people.seas.harvard.edu/texttildelowapw/stress/

  22. Marletta, A.: cpulimit (2012). https://github.com/opsengine/cpulimit

  23. NLANR/DAST: Iperf - The TCP/UDP Bandwidth Measurement Tool (2011). https://iperf.fr/

  24. Yokogawa Electric Corporation: 0.5 Class Transducer for Power Application (2009). http://goo.gl/f43ZwV

  25. Yokogawa Electric Corporation: Data Acquisition Unit MW100 (2013). http://goo.gl/7mcNV8

  26. Marsaglia, G., Tsang, W.W., Wang, J.: Evaluating Kolmogorov’s distribution. J. Stat. Softw. 8(18), 1–4 (2003)

    Article  Google Scholar 

  27. Rice, J.R.: Mathematical Statistics and Data Analysis, 3rd edn. Thomson Books/Cole, USA (2007)

    Google Scholar 

  28. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman and Hall, New York (1984)

    MATH  Google Scholar 

  29. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1998)

    MATH  Google Scholar 

  30. Semwal, V.B., Raj, M., Nandi, G.: Biometric gait identification based on a multilayer perceptron. Robot. Auton. Syst. 65, 65–75 (2015). https://doi.org/10.1016/j.robot.2014.11.010

    Article  Google Scholar 

  31. De Lozzo, M., Klotz, P., Laurent, B.: Multilayer perceptron for the learning of spatio-temporal dynamics–application in thermal engineering. Eng. Appl. Artif. Intell. 26(10), 2270–2286 (2013). https://doi.org/10.1016/j.engappai.2013.07.001

    Article  Google Scholar 

  32. Altunkaynak, A.: Prediction of significant wave height using geno-multilayer perceptron. Ocean Eng. 58, 144–153 (2013). https://doi.org/10.1016/j.oceaneng.2012.08.005

    Article  Google Scholar 

  33. Velo, R., López, P., Maseda, F.: Wind speed estimation using multilayer perceptron. Energy Convers. Manag. 81, 1–9 (2014). https://doi.org/10.1016/j.enconman.2014.02.017

    Article  Google Scholar 

  34. Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 661–670. ACM, New York (2014). https://doi.org/10.1145/2623330.2623612

  35. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  36. Ng, W.W.Y., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W.: Dual autoencoders features for imbalance classification problem. Pattern Recogn. 60, 875–889 (2016). https://doi.org/10.1016/j.patcog.2016.06.013

    Article  Google Scholar 

  37. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006)

    Article  Google Scholar 

  38. de Paula Rosa Piga, L.: Modeling, characterization, and optimization of web server power in data centers. Ph.D. thesis, Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, Brazil, November 2013

    Google Scholar 

  39. Hyndman, R.J.: Another look at forecast accuracy metrics for intermittent demand. Foresight: Int. J. Appl. Forecast. 4, 43–46 (2006)

    Google Scholar 

  40. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI 1995, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  41. Reda, S., Nowroz, A.N.: Power modeling and characterization of computing devices: a survey. Found. Trends Electron. Design Autom. 6(2), 121–216 (2012)

    Article  Google Scholar 

  42. Orgerie, A.-C., de Assuncao, M.D., Lefevre, L.: A survey on techniques for improving the energy efficiency of large-scale distributed systems. ACM Comput. Surv. (CSUR) 46(4), 47 (2014)

    Article  Google Scholar 

  43. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016). https://doi.org/10.1109/COMST.2015.2481183

    Article  Google Scholar 

  44. Bertran, R., Gonzalez, M., Martorell, X., Navarro, N., Ayguade, E.: A systematic methodology to generate decomposable and responsive power models for CMPs. IEEE Trans. Comput. 62(7), 1289–1302 (2013)

    Article  MathSciNet  Google Scholar 

  45. Lewis, A.W., Ghosh, S., Tzeng, N.-F.: Run-time energy consumption estimation based on workload in server systems. HotPower 8, 17–21 (2008)

    Google Scholar 

  46. Orgerie, A.-C., Lefèvre, L., Guérin-Lassous, I.: Energy-efficient bandwidth reservation for bulk data transfers in dedicated wired networks. J. Supercomput. 62(3), 1139–1166 (2012)

    Article  Google Scholar 

  47. Xiao, P., Hu, Z., Liu, D., Yan, G., Qu, X.: Virtual machine power measuring technique with bounded error in cloud environments. J. Netw. Comput. Appl. 36(2), 818–828 (2013)

    Article  Google Scholar 

  48. Lent, R.: A model for network server performance and power consumption. Sustain. Comput.: Inf. Syst. 3(2), 80–93 (2013)

    Google Scholar 

  49. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: ACM SIGARCH Computer Architecture News, pp. 13–23. ACM (2007)

    Google Scholar 

  50. Tang, C.-J., Dai, M.-R.: Dynamic computing resource adjustment for enhancing energy efficiency of cloud service data centers. In: 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 1159–1164. IEEE (2011)

    Google Scholar 

  51. Dhiman, G., Mihic, K., Rosing, T.: A system for online power prediction in virtualized environments using Gaussian mixture models. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 807–812 (2010). https://doi.org/10.1145/1837274.1837478

Download references

Acknowledgement

Authors thank CAPES and RNP for partially supporting this research. Hermes Senger thanks CNPq (Contract Number 305032/2015-1) and FAPESP (Process numbers 2018/00452-2, and 2018/22979-2) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Venezian Povoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povoa, L.V., Marcondes, C., Senger, H. (2019). Modeling Energy Consumption Based on Resource Utilization. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics