Skip to main content

Effects in the Algorithm Performance from Problem Structure, Searching Behavior and Temperature: A Causal Study Case for Threshold Accepting and Bin-Packing

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Included in the following conference series:

Abstract

A review of state of art reveals that the characterization and analysis of the relation between problem-algorithm has been focused only on problem features or on algorithm features; or in some situations on both, but the algorithm logical is not considered in the analysis. The above for selecting an algorithm will give the best solution. However there is more knowledge for discovering from this relation. In this paper, significant features are proposed for describing problem structure and algorithm searching fluctuation; other known metrics were considered (Autocorrelation Coefficient and Length) but were not significant. A causal study case is performed for analyzing causes and effects from: Bin-Packing problem structure, Temperature, searching behavior of Threshold Accepting algorithm and final performance to solving problem instances. The proposed features permitted in the causal study to find relations cause-effect; which gave guidelines for designing a Threshold Accepting self-adaptive algorithm. Its performance outperforms to original algorithm in 74% out of 324 problem cases. The causal analysis on relevant information from problem, algorithm (both) and algorithm logical could be an important guideline to discover rules or principles over several problem domains, which permit the design of self-adaptive algorithms to give the best solution to complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soares, C., Pinto, J.: Ranking learning algorithms: using IBL and Meta-learning on accuracy and time results. J. Mach. Learn. 50(3), 251–277 (2003)

    Article  Google Scholar 

  2. Pérez, J., Pazos, R.A., Frausto, J., Rodríguez, G., Romero, D., Cruz, L.: A statistical approach for algorithm selection. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 417–431. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24838-5_31

    Chapter  Google Scholar 

  3. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29

    Chapter  Google Scholar 

  4. Vanchipura, R., Sridharan, R.: Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 67, 1337–1353 (2013)

    Article  Google Scholar 

  5. Le, M.N., Ong, Y.S., Jin, Y., Sendhoff, B.: Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput. 1(3), 175–190 (2009)

    Article  Google Scholar 

  6. Cayci, A., Menasalvas, E., Saygin, Y., Eibe, S.: Self-configuring data mining for ubiquitous computing. Inf. Sci. 246, 83–99 (2013)

    Article  Google Scholar 

  7. Tavares, J.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst. Man Cybern. Part B 38(3), 604–616 (2008)

    Article  Google Scholar 

  8. Pérez, J., Cruz, L., Landero, V.: Explaining performance of the threshold accepting algorithm for the bin packing problem: a causal approach. Polish J. Environ. Stud. 16(5B), 72–76 (2007)

    Google Scholar 

  9. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: AAAI, vol. 10, pp. 210–216 (2010)

    Google Scholar 

  10. Quiroz, M., Cruz, L., Torrez, J., Gómez, C.: Improving the performance of heuristic algorithms based on exploratory data analysis. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, Studies in Computational Intelligence. SCI, vol. 452, pp. 361–375. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33021-6_29

    Chapter  Google Scholar 

  11. Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ries, J., Beullens, P.: A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. J. Oper. Res. Soc. 66(5), 782–793 (2015)

    Article  Google Scholar 

  13. Yong, X., Feng, D., Rongchun, Z.: Optimal selection of image segmentation algorithms based on performance prediction. In: Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, pp. 105–108. Australian Computer Society, Inc. (2004)

    Google Scholar 

  14. Yuen, S., Zhang, X.: Multiobjective evolutionary algorithm portfolio: choosing suitable algorithm for multiobjective optimization problem. In: IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp. 1967–1973 (2014)

    Google Scholar 

  15. Wagner, M., Lindauer, M., Misir, M., et. al.: A case of study of algorithm selection for the travelling thief problem. J. Heuristics 1–26 (2017)

    Google Scholar 

  16. Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding the empirical hardness of NP-complete problems. Mag. Commun. ACM 57(5), 98–107 (2014)

    Article  Google Scholar 

  17. Mull, N., Fremont, D.J., Seshia, S.A.: On the hardness of SAT with community structure. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 141–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_10

    Chapter  MATH  Google Scholar 

  18. Cruz, L., Gómez, C., Pérez, J., Landero, V., Quiroz, M., Ochoa, A.: Algorithm Selection: From Meta-learning to Hyper-heuristics. INTECH Open Access Publisher (2012)

    Google Scholar 

  19. Pavón, R., Díaz, F., Laza, R., Luzón, M.V.: Experimental evaluation of an automatic parameter setting system. Expert Syst. Appl. 37(7), 5224–5238 (2010)

    Article  Google Scholar 

  20. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_3

    Chapter  Google Scholar 

  21. Yeguas, E., Luzón, M.V., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a Bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)

    Article  Google Scholar 

  22. Biedenkapp, A., Lindauer, M.T., Eggensperger, K., Hutter, F., Fawcett, C., Hoos, H.H.: Efficient parameter importance analysis via ablation with surrogates. In: AAAI, pp. 773–779 (2017)

    Google Scholar 

  23. Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.-É., Hoos, H.H.: Automatically configuring multi-objective local search using multi-objective optimisation. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 61–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_5

    Chapter  Google Scholar 

  24. Guo, H., Hsu, W.H.: A learning-based algorithm selection meta-reasoner for the real-time MPE problem. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 307–318. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30549-1_28

    Chapter  Google Scholar 

  25. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In: Burke, V.A. (ed.) Proceedings of the 16th Biennial European Conference on Artificial Intelligence, pp. 475–479. IOS Press, Valencia (2004)

    Google Scholar 

  26. Hoos, H.H., Smyth, K., Stützle, T.: Search space features underlying the performance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_6

    Chapter  Google Scholar 

  27. Konak, A.: Simulation optimization using tabu search: an empirical study. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of Winter simulation Conference, pp. 2686–2692 (2005)

    Google Scholar 

  28. Chevalier, R.: Balancing the effects of parameter settings on a genetic algorithm for multiple fault diagnosis. In: Artificial Intelligence. University of Georgia (2006)

    Google Scholar 

  29. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_31

    Chapter  Google Scholar 

  30. Munoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015)

    Article  Google Scholar 

  31. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47(3–4), 295–328 (2006)

    MATH  MathSciNet  Google Scholar 

  32. Montero, E., Riff, M.-C.: On-the-fly calibrating strategies for evolutionary algorithms. Inf. Sci. 181, 552–566 (2011)

    Article  Google Scholar 

  33. Pérez, J., et al.: An application of causality for representing and providing formal explanations about the behavior of the threshold accepting algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, Jacek M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1087–1098. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_102

    Chapter  Google Scholar 

  34. Pérez, J., et al.: A causal approach for explaining why a heuristic algorithm outperforms another in solving an instance set of the bin packing problem. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 591–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68123-6_64

    Chapter  Google Scholar 

  35. Pérez, J., Cruz, L., Pazos, R., Landero, V., Pérez, V.: Application of causal models for the selection and redesign of heuristic algorithms for solving the bin-packing problem. Polish J. Environ. Stud. 17(4C), 25–30 (2008). (ACS-AISBIS 2008)

    Google Scholar 

  36. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, Cambridge (2001)

    Book  Google Scholar 

  37. Korb, K.: Bayesian Artificial Intelligence. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  38. McGeoch, C.C.: Experimental analysis of algorithms. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 62, pp. 489–513. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-5362-2_14

    Chapter  MATH  Google Scholar 

  39. Khuri, S., Schütz, M., Heitkötter, J.: Evolutionary heuristics for the bin packing problem. In: Artificial Neural Nets and Genetic Algorithms, pp. 285–288. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-7535-4_75

    Chapter  Google Scholar 

  40. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)

    Article  MathSciNet  Google Scholar 

  41. Beasley, J.E.: OR-Library. Brunel University (2006). http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html

  42. Scholl, A., Klein, R. (2003). http://www.wiwi.uni-jena.de/Entscheidung/binpp/

  43. Fayyad, U., Irani, K.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. IJCAI 1022–1029 (1993)

    Google Scholar 

  44. Merz, P., Freisleben, B., et al.: Fitness landscapes and memetic algorithm design. New Ideas Optim. 245–260 (1999)

    Google Scholar 

  45. Hugin Expert. www.hugin.com

  46. Norsys Corporation. www.norsys.com

  47. Dataplot. www.itl.nist.gov/div898/software/dataplot/homepage.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Landero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landero, V., Pérez, J., Cruz, L., Turrubiates, T., Ríos, D. (2019). Effects in the Algorithm Performance from Problem Structure, Searching Behavior and Temperature: A Causal Study Case for Threshold Accepting and Bin-Packing. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics