Advertisement

Advanced DEA Models with R Codes

  • Farhad Hosseinzadeh Lotfi
  • Ali EbrahimnejadEmail author
  • Mohsen Vaez-Ghasemi
  • Zohreh Moghaddas
Chapter
  • 559 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 386)

Abstract

Using data envelopment analysis as a mathematical performance evaluation tool is much more serious for researchers and practitioners. Different data envelopment analysis models are now introduced in different fields. In addition to the classic performance evaluation models in data envelopment analysis, developed models such as super-efficiency, returns to scale, progress and regress models, and so on have been introduced in this technique that help different aspects of analytics and decision making units in performance evaluation. In this chapter, such developed DEA models are formulated, and then the corresponding R codes for these models are provided.

Keywords

Data envelopment analysis Benchmark Ranking Returns to scale Malmquist productivity index Cost efficiency Revenue efficiency Profit efficiency Directional efficiency Common weights Congestion 

References

  1. 1.
    Anderson, P., Peterson, N.C.: A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 39(10), 1261–1264 (1993)Google Scholar
  2. 2.
    Mehrabian, S., Alirezaee, M.R., Jahanshahloo, G.R.: A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14, 261–266 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Shoja, N., Tohidi, G., Razavyan, S.: Ranking using L1-norm in data envelopment analysis. Appl. Math. Comput. 153, 215–224 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Banker, R.D., Cooper, W.W., Seiford, L.M., Thrall, R.M., Zhu, J.: Returns to scale in different DEA models. Eur. J. Oper. Res. 154, 345–362 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Camanho, A.S., Dyson, R.G.: Cost efficiency, production and value-added models in the analysis of bank branch performance. JORS 56(5), 483–494 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, C.G., Fare, R., Seavert, C.F.: Revenue capacity efficiency of pear trees and its decomposition. J. Am. Soc. Hortic. Sci. 131(1), 32–40 (2006)CrossRefGoogle Scholar
  7. 7.
    Caves, D.W., Christensen, L.R., Diewert, W.E.: The economic theory of index numbers and the measurement of input, output and productivity. Econometrica 50, 1393–1414 (1982)CrossRefGoogle Scholar
  8. 8.
    Tone, K.: A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130, 498–509 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Färe, R., Grosskopf, S.: Network DEA. Socio-Econ. Plan. Sci. 34, 35–49 (2000)CrossRefGoogle Scholar
  10. 10.
    Färe, R., Grosskopf, S.: Profit efficiency, Farrell decompositions and the Mahler inequality. Econ. Lett. 57, 283–287 (1997)CrossRefGoogle Scholar
  11. 11.
    Koltai, T., Uzonyi-Kecskés, J.: The comparison of data envelopment analysis (DEA) and financial analysis results in a production simulation game. Acta Polytech. Hung. 14(4), 167–185 (2017)Google Scholar
  12. 12.
    Cooper, W.W., Thompson, R.G., Thrall, R.M.: Introduction: extensions and new developments in DEA. Ann. Oper. Res. 66, 3–45 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hosseinzadeh Lotfi, F., Jahanshahloo, G.R., Memariani, A.: A method for finding common set of weights by multiple objective programming in data envelopment analysis. S. W. J. Pure Appl. Math. 1, 44–54 (2000)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chambers, R.G., Chung, Y., Färe, R.: Benefit and distance functions. J. Econ. Theory 70, 407–419 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Farhad Hosseinzadeh Lotfi
    • 1
  • Ali Ebrahimnejad
    • 2
    Email author
  • Mohsen Vaez-Ghasemi
    • 3
  • Zohreh Moghaddas
    • 4
  1. 1.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Mathematics, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  3. 3.Department of Mathematics, Rasht BranchIslamic Azad UniversityRashtIran
  4. 4.Department of Mathematics, Qazvin BranchIslamic Azad UniversityQazvinIran

Personalised recommendations