Advertisement

Introduction to Data Envelopment Analysis and Fuzzy Sets

  • Farhad Hosseinzadeh Lotfi
  • Ali EbrahimnejadEmail author
  • Mohsen Vaez-Ghasemi
  • Zohreh Moghaddas
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 386)

Abstract

Data Envelopment Analysis (DEA) is a mathematical based programing technique for performance evaluation of a set of Decision Making Units (DMUs). This technique is widely used for assessing different systems with different inputs and outputs in different fields. In this chapter some basic definition of mathematical modeling with DEA technique will be reviewed and introduced. The definitions of efficiency, relative efficiency, effectiveness, and productivity are given. It will be shown how basic DEA models on basis of different Production possibility sets (PPSs) can be formulated. Also, some characteristics of envelopment and multiplier models will be discussed. Finally, the main concepts of fuzzy set theory are introduced.

Keywords

Data envelopment analysis (DEA) Production possibility sets (PPSs) Decision making units (DMUs) Efficiency Effectiveness Productivity Fuzzy sets 

References

  1. 1.
    Charnes, A., Cooper, W.W., Lewin, A.Y., Seiford, L.M.: Data Envelopment Analysis: Theory, Methodology, and Applications. Springer (1995). ISBN-13: 978-0792394792Google Scholar
  2. 2.
    Färe, R., Grosskopf, S.: Intertemporal Production Frontiers: With Dynamic DEA. Springer (1996). ISBN-13: 978-0792397090Google Scholar
  3. 3.
    Cooper, W.W., Seiford, L.M., Tone, K.: Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References. Springer (2005). ISBN-13: 978-0387285801Google Scholar
  4. 4.
    Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis: a Comprehensive Text with Models, Applications, References and DEA-Solver Software (2006). ISBN-13: 978-0387452814Google Scholar
  5. 5.
    Klemen, B.: Data Envelopment Analysis: Returns-to-Scale Measurement. VDM Verlag (2009). ISBN-13: 978-3639167146Google Scholar
  6. 6.
    Cooper, W.W., Seiford, L.M., Joe, Z.: Handbook on Data Envelopment Analysis. In: International Series in Operations Research & Management Science. Springer (2011). ISBN-13: 978-1441961501Google Scholar
  7. 7.
    Zhu, J., Cook, W.D.: Data Envelopment Analysis: Balanced Benchmarking. Create Space Independent Publishing Platform (2013). ISBN-13: 978-1492974796Google Scholar
  8. 8.
    Emrouznejad, A., Tavana, M.: Performance Measurement with Fuzzy Data Envelopment Analysis. In: Studies in Fuzziness and Soft Computing. Springer (2013). ISBN-13: 978-3642413711Google Scholar
  9. 9.
    Al Atrash, A.R.: Robust Data Envelopment Analysis Model: Theory and Application. LAP LAMBERT Academic Publishing (2013). ISBN-13: 978-3659434426Google Scholar
  10. 10.
    Wen, M.: Uncertain Data Envelopment Analysis . In: Uncertainty and Operations Research. Springer (2014). ISBN-13: 978-3662438015Google Scholar
  11. 11.
    Ozcan, Y.A., Tone, K.: Health Care Benchmarking and Performance Evaluation: an Assessment Using Data Envelopment Analysis (DEA). In: International Series in Operations Research & Management Science. Springer (2014). ISBN-13: 978-1489974716Google Scholar
  12. 12.
    Cook, W.D., Zhu, J.: Data Envelopment Analysis: a Handbook of Modeling Internal Structure and Network. In: International Series in Operations Research & Management Science. Springer (2014). ISBN-13: 978-1489980670Google Scholar
  13. 13.
    Blackburn, V., Brennan, S., Ruggiero, J.: Nonparametric Estimation of Educational Production and Costs Using Data Envelopment Analysis. In: International Series in Operations Research & Management Science. Springer (2014). ISBN-13: 978-1489974686Google Scholar
  14. 14.
    Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets. In: International Series in Operations Research & Management Science. Springer (2015). ISBN-13: 978-3319066462Google Scholar
  15. 15.
    Fare, R., Grosskopf, S., Margaritis, D.: Advances in Data Envelopment Analysis. World Scientific (2015). ASIN: B01GTUQG9IGoogle Scholar
  16. 16.
    Ray, S.C., Kumbhakar, S.C., Dua, P.: Benchmarking for Performance Evaluation: a Production Frontier Approach. Springer (2015). ISBN-13: 978-8132222521Google Scholar
  17. 17.
    Aparicio, J., Knox Lovell, C.A., Pastor, J.T.: Advances in Efficiency and Productivity. In: International Series in Operations Research & Management Science. Springer (2016). ISBN-13: 978-3319484594Google Scholar
  18. 18.
    Hwang, S., Lee, H.S., Zhu, J.: Handbook of Operations Analytics Using Data Envelopment Analysis. In: International Series in Operations Research & Management Science. Springer (2016). ISBN-13: 978-1489977038Google Scholar
  19. 19.
    Zhu, J.: Data Envelopment Analysis: a Handbook of Empirical Studies and Applications. In: International Series in Operations Research & Management Science. Springer (2016). ISBN-13: 978-1489976826Google Scholar
  20. 20.
    Hosseinzadeh Lotfi, F., Najafi, S.E., Nozari, H.: Data Envelopment Analysis and Effective Performance Assessment. In: Advances in Business Information Systems and Analytics. IGI Global (2016). ISBN-13: 978-1522505969Google Scholar
  21. 21.
    Tone, K.: Advances in DEA Theory and Applications: With Extensions to Forecasting Models. In: Wiley Series in Operations Research and Management Science. Wiley (2017). ISBN-13: 978-1118945629Google Scholar
  22. 22.
    Novoa, N.V.: Data Envelopment Analysis: From Normative to Descriptive Performance Evaluation. In: Europäische Hochschulschriften/European University Studies/Publications Universitaires Européennes. Peter Lang GmbH, Internationaler Verlag der Wissenschaften (2017). ISBN-13: 978-3631724491Google Scholar
  23. 23.
    Sherman, H.D.: Measurement of Hospital Efficiency Using Data Envelopment Analysis. Springer (2017). ISBN-13: 978-1376178579Google Scholar
  24. 24.
    Suzuki, S., Nijkamp, P.: Regional Performance Measurement and Improvement: New Developments and Applications of Data Envelopment Analysis. In: New Frontiers in Regional Science: Asian Perspectives. Springer (2018). ISBN-13: 978-9811091148Google Scholar
  25. 25.
    Panik, M.J.: Linear Programming and Resource Allocation Modeling. Wiley (2018). ISBN-13: 978-1119509448CrossRefGoogle Scholar
  26. 26.
    Huber, S., Geiger, M.J., Almeida, A.T.: Multiple Criteria Decision Making and Aiding: Cases on Models and Methods with Computer Implementations. In: International Series in Operations Research & Management Science. Springer (2018). ISBN-13: 978-3319993034Google Scholar
  27. 27.
    Kahraman, C., Otay, İ.: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. In: Studies in Fuzziness and Soft Computing. Springer (2018). ISBN-13: 978-3030000448Google Scholar
  28. 28.
    Kao, C.: Network Data Envelopment Analysis: Foundations and Extensions. In: International Series in Operations Research & Management Science. Springer (2016). ISBN-13: 978-3319317168Google Scholar
  29. 29.
    Ebrahimnejad, A., Verdegay, J.L.: Fuzzy Sets-Based Methods and Techniques for Modern Analytics. In: Studies in Fuzziness and Soft Computing. Springer (2018). ISBN-13: 978-3319739021Google Scholar
  30. 30.
    Sueyoshi, T., Goto, M.: Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis. In: Wiley Series in Operations Research and Management Science. Wiley (2018). ISBN-13: 978-1118979341Google Scholar
  31. 31.
    Khezrimotlagh, D., Chen, Y.: Decision Making and Performance Evaluation Using Data Envelopment Analysis. In: International Series in Operations Research & Management Science. Springer (2018). ISBN-13: 978-3319763446Google Scholar
  32. 32.
    Paradi, J.C., Sherman, H.D., Tam, F.K.: Data Envelopment Analysis in the Financial Services Industry: a Guide for Practitioners and Analysts Working in Operations Research Using DEA. In: Operations Research & Management Science. Springer (2018). ISBN-13: 978-3319888316Google Scholar
  33. 33.
    Zhou, W., Xu, Z.: Qualitative Investment Decision-Making Methods under Hesitant Fuzzy Environments. In: Studies in Fuzziness and Soft Computing. Springer (2019). ISBN-13: 978-3030113483Google Scholar
  34. 34.
    Farrell, M.J.: The measurement of productive efficiency. J. R. Stat. Soc. A 120, 253–281 (1957)CrossRefGoogle Scholar
  35. 35.
    Charnes, A., Cooper, W.W., Golany, B., Seiford, L.M., Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econ. (Neth.) 30, 91–107 (1985)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)CrossRefGoogle Scholar
  37. 37.
    Bardhan, I., Bowlin, W.F., Cooper, W.W., Sueyoshi, T.: Models and measures for efficiency dominance in DEA, part I: additive models and MED measures. J. Oper. Res. Soc. Jpn. 39, 322–332 (1996)CrossRefGoogle Scholar
  38. 38.
    Färe, R., Grosskopf, S.: Estimation of returns to scale using data envelopment analysis: a comment. Eur. J. Oper. Res. 79, 379–382 (1994)CrossRefGoogle Scholar
  39. 39.
    Deprins, D., Simar, L., Tulkens, H.: Measuring labor inefficiency in post offices. In: Marchand, M., Pestieau, P., Tulkens, H. (eds.) The Performance of Public Enterprises: Concepts and Measurements, North-Holland, Amsterdam (1984)Google Scholar
  40. 40.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  41. 41.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, PTR, Englewood Cliffs (1995)zbMATHGoogle Scholar
  42. 42.
    Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming. Springer, Berlin (1992)CrossRefGoogle Scholar
  43. 43.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems Theory and Applications. Academic Press, New York (1980)Google Scholar
  44. 44.
    Zimmermann, H.J.: Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic Publishers, Boston (1987)CrossRefGoogle Scholar
  45. 45.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17(4), 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ebrahimnejad, A., Verdegay, J.L.: A survey on models and methods for solving fuzzy linear programming problems. In: Kahraman, C., Kaymak, U., Yazici, A. (eds.) Fuzzy Logic in Its 50th Year. Studies in Fuzziness and Soft Computing, vol. 341. Springer, Cham (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Farhad Hosseinzadeh Lotfi
    • 1
  • Ali Ebrahimnejad
    • 2
    Email author
  • Mohsen Vaez-Ghasemi
    • 3
  • Zohreh Moghaddas
    • 4
  1. 1.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Mathematics, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  3. 3.Department of Mathematics, Rasht BranchIslamic Azad UniversityRashtIran
  4. 4.Department of Mathematics, Qazvin BranchIslamic Azad UniversityQazvinIran

Personalised recommendations