Skip to main content

An Evolving Network Model Based on a Triangular Connecting Mechanism for the Internet Topology

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11635))

Included in the following conference series:

Abstract

Modeling the Internet topology is the basis for developing and utilizing the Internet in a deeper level. Scale-free feature and small-world effect are two most significant characteristics of the Internet. Most existing models make reasonable jobs at catching the former, while they do less well in matching the latter one. For this issue, an evolving network model with a new triangular connecting mechanism was presented. Numerical simulations show that networks generated by the model are consistent with the Internet in many topological properties. This model is suitable for modeling other complex networks as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, J., Wen, G., Hong, D.: A new RFID anti-collision algorithm based on the Q-ary search scheme. Chin. J. Electron. 24(4), 679–683 (2015)

    Article  Google Scholar 

  2. Su, J., Zhao, X., Hong, D., Luo, Z., Chen, H.: Q-value fine-grained adjustment based RFID anti-collision algorithm. IEICE Trans. Commun. 99(7), 1593–1598 (2016)

    Article  Google Scholar 

  3. Su, J., Hong, D., Tang, J., Chen, H.: An efficient anti-collision algorithm based on improved collision detection scheme. IEICE Trans. Commun. 99(2), 465–470 (2016)

    Article  Google Scholar 

  4. Zhang, J., Xie, N., Zhang, X., Yue, K., Li, W., Kumar, D.: Machine learning based resource allocation of cloud computing in auction. Comput. Mater. Continua 56(1), 123–135 (2018)

    Google Scholar 

  5. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, pp. 251–262. ACM (1999)

    Google Scholar 

  6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arthur, W.B.: Complexity and the economy. Science 284(5411), 107–109 (1999)

    Article  Google Scholar 

  8. Banavar, J.R., Maritan, A., Rinaldo, A.: Size and form in efficient transportation networks. Nature 399(6732), 130 (1999)

    Article  Google Scholar 

  9. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  10. Bu, T., Towsley, D.: On distinguishing between internet power law topology generators. In: Proceedings Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies 2002, pp. 638–647. IEEE (2002)

    Google Scholar 

  11. Zhou, S., Mondragón, R.J.: Accurately modeling the Internet topology. Phys. Rev. E 70(6), 066108 (2004)

    Article  Google Scholar 

  12. Fan, Z., Chen, G., Zhang, Y.: A comprehensive multi-local-world model for complex networks. Phys. Lett. A 373(18–19), 1601–1605 (2009)

    Article  MATH  Google Scholar 

  13. Shakkottai, S., Fomenkov, M., Koga, R., Krioukov, D., Claffy, K.C.: Evolution of the internet as-level ecosystem. Eur. Phys. J. B 74(2), 271–278 (2010)

    Article  MATH  Google Scholar 

  14. Wang, X., Loguinov, D.: Understanding and modeling the Internet topology: economics and evolution perspective. IEEE/ACM Trans. Netw. 18(1), 257–270 (2010)

    Article  Google Scholar 

  15. Wen, G., Duan, Z., Chen, G., Geng, X.: A weighted local-world evolving network model with aging nodes. Phys. A 390(21–22), 4012–4026 (2011)

    Article  Google Scholar 

  16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  MATH  Google Scholar 

  17. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  18. Bianconi, G.: Number of cycles in off-equilibrium scale-free networks and in the internet at the autonomous system level. Eur. Phys. J. B 38(2), 223–230 (2004)

    Article  MathSciNet  Google Scholar 

  19. Su, J., Ren, Y., Yang, Y., Han, Y., Wen, G.: A collision arbitration protocol based on specific selection function. Chin. J. Electron. 26(4), 864–870 (2017)

    Article  Google Scholar 

  20. Su, J., Sheng, Z., Xie, L.: A collision-tolerant-based anti-collision algorithm for large scale RFID system. IEEE Commun. Lett. 21(7), 1517–1520 (2017)

    Article  Google Scholar 

  21. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107 (2002)

    Article  Google Scholar 

  22. Li, Y., Li, J., Chen, J., Lu, M., Li, C.: Seed selection for data offloading based on social and interest graphs. Comput. Mater. Continua 57(3), 571–587 (2018)

    Article  Google Scholar 

  23. Su, J., Sheng, Z., Hong, D., Wen, G.: An effective frame breaking policy for dynamic framed slotted Aloha in RFID. IEEE Commun. Lett. 20(4), 692–695 (2016)

    Article  Google Scholar 

  24. Su, J., Sheng, Z., Xie, L., Li, G., Liu, A.X.: Fast splitting based tag identification algorithm for anti-collision in UHF RFID System. IEEE Trans. Commun. 67, 2527–2538 (2018)

    Article  Google Scholar 

  25. Su, J., Sheng, Z., Leung, V.C., Chen, Y.: Energy efficient tag identification algorithms for RFID: survey, motivation and new design. IEEE Wirel. Commun. (2019)

    Google Scholar 

  26. Internet AS-level Topology Archive. http://irl.cs.ucla.edu/topology/

  27. University of Oregon Route Views project. http://archive.routeviews.org/

  28. RIS Raw Data—RIPE Network Coordination Centre. http://data.ris.ripe.net/

  29. Packet Clearing House. https://www.pch.net/resources/Routing_Data/

  30. Internet2. http://ndb7.net.internet2.edu/bgp/

Download references

Acknowledgments

The authors would like to thank the members of our research group. Personally, Tao Tang would like to thank Huangyu Hu, Xuemeng Zhai, and Binwei Wu for correcting our paper and other help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, T., Hu, G. (2019). An Evolving Network Model Based on a Triangular Connecting Mechanism for the Internet Topology. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24268-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24267-1

  • Online ISBN: 978-3-030-24268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics