Skip to main content

Delay-Tolerant Rendezvous-Based Data Collection for Target Tracking in Large-Scale Wireless Sensor Networks with UGV

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11633))

Included in the following conference series:

Abstract

Energy efficiency receives significant attention in wireless sensor networks. In this paper, a UGV is employed as an energy-efficient solution to prolong the network lifetime in target tracking. Data collection strategies for target tracking are investigated including the amount of data and the transmitted distances. For contributed data, the quantization technology is exploited for energy efficiency. Considering the uncertainty of sensing data, we determine a group from intra-cluster members to gather data. And then, we formulate our design a selection optimization problem, maximizing the utilization of the quality of contributed data using information matrix. As a result, we develop an optimization algorithm named rendezvous-based data collection (RDC). Furthermore, two stages of data collection for target tracking are analyzed with a UGV. Simulations verify that the proposed scheme achieves network energy saving as well as energy balance in the framework of target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aslan, Y.E., Korpeoglu, I., Ulusoy, O.: A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 36(6), 614–625 (2012)

    Article  Google Scholar 

  2. Harb, H., Makhoul, A.: Energy-efficient sensor data collection approach for industrial process monitoring. IEEE Trans. Industr. Inf. 14(2), 661–672 (2018)

    Article  Google Scholar 

  3. Mahboubi, H., Masoudimansour, W., Aghdam, A.G.: An energy-efficient target-tracking strategy for mobile sensor networks. IEEE Trans. Cybern. 47(2), 511–523 (2016)

    Article  MATH  Google Scholar 

  4. Zhang, R., Pan, J., Xie, D.: NDCMC: a hybrid data collection approach for large-scale WSNs using mobile element and hierarchical clustering. IEEE Internet Things J. 3(4), 533–543 (2016)

    Article  Google Scholar 

  5. Chuang, S.C.: Survey on target tracking in wireless sensor networks, Department of Computer Science National Tsing Hua University (2005)

    Google Scholar 

  6. Tunca, C., Isik, S., Donmez, M.Y.: Distributed mobile sink routing for wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 16(2), 877–897 (2014)

    Article  Google Scholar 

  7. Zhao, M., Yang, Y.: Bounded relay Hop mobile data gathering in wireless sensor networks. IEEE Trans. Comput. 61(2), 265–277 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Salarian, H., Chin, K.W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)

    Article  Google Scholar 

  9. Yang, S., Adeel, U., Tahir, Y.: Practical opportunistic data collection in wireless sensor networks with mobile sinks. IEEE Trans. Mob. Comput. 16(5), 1420–1433 (2017)

    Article  Google Scholar 

  10. Nguyen, M.T., Teague, K.A., Rahnavard, N.: CCS: energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Comput. Netw. 106(1), 171–185 (2016)

    Article  Google Scholar 

  11. Na, W., Xiao-gang, Q., Li, D., Hua, J.: Clustering-based routing algorithm in wireless sensor networks with mobile sink. J. Netw. 9(9), 2376–2382 (2014)

    Google Scholar 

  12. Rucco, A., Sujit, P.B., Aguiar, A.P.: Optimal rendezvous trajectory for unmanned aerial-ground vehicles. IEEE Trans. Aerosp. Electron. Syst. PP(99), 1 (2016)

    Google Scholar 

  13. Yu, Y.: Distributed target tracking in wireless sensor networks with data association uncertainty. IEEE Commun. Lett. 21(6), 1281–1284 (2017)

    Article  Google Scholar 

  14. Zhang, J., Wu, C.D., Zhang, Y.Z.: Energy-efficient adaptive dynamic sensor scheduling for target monitoring in wireless sensor networks. ETRI J. 33(6), 857–863 (2011)

    Article  Google Scholar 

  15. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  16. Chen, G., Li, C., Ye, M.: An unequal cluster-based routing protocol in wireless sensor networks. Wirel. Netw. 15, 193–207 (2007)

    Article  Google Scholar 

  17. Xu, Z., Chen, L., Chen, C.: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks. IEEE Internet Things J. 3(4), 520–532 (2016)

    Article  Google Scholar 

  18. Konstantopoulos, C., Pantziou, G., Gavalas, D.: A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Trans. Parallel Distrib. Syst. 23(5), 809–817 (2012)

    Article  Google Scholar 

  19. Ang, L.M., Seng, J.K.P., Zungeru, A.M.: Optimizing energy consumption for big data collection in large-scale wireless sensor networks with mobile collectors. IEEE Syst. J. 99, 1–11 (2018)

    Google Scholar 

  20. Kumar, D.P., Tarachand, A., Annavarapu, C.S.R.: ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Appl. Soft Comput. 69, 528–540 (2018)

    Article  Google Scholar 

  21. Sharma, S., Puthal, D., Jena, S.K.: Rendezvous based routing protocol for wireless sensor networks with mobile sink. J. Supercomput. 73, 1–21 (2017)

    Article  Google Scholar 

  22. Zhang, J., Tang, J., Wang, T.: Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int. J. Sens. Netw. 23(4), 248–257 (2017)

    Article  Google Scholar 

  23. Lee, E., Park, S., Oh, S.: Rendezvous-based data dissemination for supporting mobile sinks in multi-hop clustered wireless sensor networks. Wirel. Netw. 20(8), 2319–2336 (2014)

    Article  Google Scholar 

  24. Konstantopoulos, C., Vathis, N., Pantziou, G.: Employing mobile elements for delay-constrained data gathering in WSNs. Comput. Netw. 135, 108–131 (2018)

    Article  Google Scholar 

  25. Cao, N., Choi, S., Masazade, E.: Sensor selection for target tracking in wireless sensor networks with uncertainty. IEEE Trans. Signal Process. 64(20), 5191–5204 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wu, B., Feng, Y.P., Zheng, H.Y.: Dynamic cluster members scheduling for target tracking in sensor networks. IEEE Sens. J. 16(19), 7242–7249 (2016)

    Article  Google Scholar 

  27. Diddigi, R.B., Prabuchandran, K.J., Bhatnagar, S.: Novel sensor scheduling scheme for intruder tracking in energy efficient sensor networks. IEEE Wirel. Commun. Lett. 7(5), 712–715 (2018)

    Article  Google Scholar 

  28. Wang, J., Ju, C.: A PSO based energy efficient coverage control algorithm for wireless sensor networks. CMC Comput. Mater. Continua 56(3), 433–446 (2018)

    Google Scholar 

  29. Gu, J., Su, T., Wang, Q.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018)

    Article  Google Scholar 

  30. Wenyan, L., Xiangyang, L., Yimin, L.: Localization algorithm of indoor Wi-Fi access points based on signal strength relative relationship and region division. CMC Comput. Mater. Continua 55(1), 071–093 (2018)

    Google Scholar 

  31. Ming, W., Jiangyuan, Y., Yuan, J., Xi, J.: Event-based anomaly detection for non-public industrial communication protocols in SDN-based control systems. CMC Comput. Mater. Continua 55(3), 447–463 (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Foundation of Nanjing University of Information Science and Technology (Grant No. 2241101201101), Open Foundation of Education Ministry Demonstration Base of Internet Application Innovation Open Platform (Meteorological Cloud Platform and Application) (Grant No. 2201101401063), PAPD and Jiangsu Government Scholarship for Overseas Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Xu, J., Wang, T. (2019). Delay-Tolerant Rendezvous-Based Data Collection for Target Tracking in Large-Scale Wireless Sensor Networks with UGV. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11633. Springer, Cham. https://doi.org/10.1007/978-3-030-24265-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24265-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24264-0

  • Online ISBN: 978-3-030-24265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics