Newtonian Fluids
Chapter
First Online:
- 1.5k Downloads
Abstract
The equations of motion for an incompressible Newtonian fluid are given in Sect. 8.11.1.
References
- H. Bhatia, G. Norgard, V. Pascucci, and P.T. Bremer, The Helmholtz-Hodge decomposition - a survey. IEEE Trans. Vis. Comput. Graph. 19 (8), 1386–1404 (2013). https://doi.org/10.1109/TVCG.2012.316. ISSN 1077-2626CrossRefGoogle Scholar
- L. Cavaleri, J.-H.G.M. Alves, F. Ardhuin, A. Babanin, M. Banner, K. Belibassakis, M. Benoit, M. Donelan, J. Groeneweg, T.H.C. Herbers, P. Hwang, P.A.E.M. Janssen, T. Janssen, I.V. Lavrenov, R. Magne, J. Monbaliu, M. Onorato, V. Polnikov, D. Resio, W.E. Rogers, A. Sheremet, J. McKee Smith, H.L. Tolman, G. van Vledder, J. Wolf, I. Young, Wave modelling - the state of the art. Prog. Oceanogr. 75 (4), 603–674 (2007). https://doi.org/10.1016/j.pocean.2007.05.005. http://www.sciencedirect.com/science/article/pii/S0079661107001206. ISSN 0079-6611
- T. Cebeci, J. Cousteix, Modeling and Computation of Boundary-layer Flows, 2nd edn. (Springer, New York, 2005)zbMATHGoogle Scholar
- R.C.V. Coelho, M. Mendoza, M.M. Doria, H.J. Herrmann, Kelvin-Helmholtz instability of the Dirac fluid of charge carriers on graphene. Phys Rev B 96, 184307 (2017). https://doi.org/10.1103/PhysRevB.96.184307. https://link.aps.org/doi/10.1103/PhysRevB.96.184307
- P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2nd edn. (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
- B. Eckhardt, T.M. Schneider, B. Hof, J. Westerweel, Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007)MathSciNetCrossRefGoogle Scholar
- J. Ellenberger, P.J. Klijn, M. Tels, J. Vleggaar, Construction and performance of a cone-and-plate rheogoniometer with air bearings. J. Phys. E Sci. Instrum. 9, 763–765 (1976)CrossRefGoogle Scholar
- G. Eyink, U. Frisch, R. Moreau, A. Sobolevski, Euler equations: 250 years on, proceedings of an international conference. Physica D 237 (14–17), 1825–2250 (2008)MathSciNetzbMATHGoogle Scholar
- R.D. Gregory, Helmholtz’s theorem when the domain is infinite and when the field has singular points. Q. J. Mech. Appl. Math. 49, 439–450 (1996)MathSciNetCrossRefGoogle Scholar
- M.H. Holmes, Introduction to Numerical Methods in Differential Equations. Texts in Applied Mathematics, vol. 52 (Springer, New York, 2005)Google Scholar
- P. Iskyan, Cloud formation over Breckenridge, Colorado (2019), https://www.facebook.com/piskyan/media_set?set=a.1777219625455&type=3. Accessed 10 Jan 2019
- D.D. Joseph, Potential flow of viscous fluids: Historical notes. Int. J. Multiphase Flow 32, 285–310 (2006)CrossRefGoogle Scholar
- S. Kavosi, Kelvin-Helmholtz Instability at Earth’s magnetopause: THEMIS Observations and OpenGGCM Simulations, PhD thesis, University of New Hampshire (2015)Google Scholar
- C. Kunkle, Velocity field in a pipe, in Millersville University Physics: Experiment of the Month (2008). https://www.millersville.edu/physics/experiments/067/index.php
- H.G. Lee, J. Kim, Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids. Eur. J. Mech. B Fluids 49, 77–88 (2015). https://doi.org/10.1016/j.euromechflu.2014.08.001. http://www.sciencedirect.com/science/article/pii/S0997754614001319. ISSN 0997-7546
- Y.K. Leong, Y.L. Yeow, Obtaining the shear stress shear rate relationship and yield stress of liquid foods from couette viscometry data. Rheol. Acta 42, 365–371 (2003)CrossRefGoogle Scholar
- B.W. Levin, M.A. Nosov, Physics of Tsunamis (Springer, New York, 2016)CrossRefGoogle Scholar
- S. Morris, Boeing 777-236/ER aircraft, in AirTeamImages (2006)Google Scholar
- T. Mullin, Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43 (1), 1–24 (2011). https://doi.org/10.1146/annurev-fluid-122109-160652 MathSciNetCrossRefGoogle Scholar
- A. Paquier, F. Moisy, M. Rabaud, Viscosity effects in wind wave generation. Phys. Rev. Fluids 1, 083901 (2016). https://doi.org/10.1103/PhysRevFluids.1.083901. https://link.aps.org/doi/10.1103/PhysRevFluids.1.083901
- Y.M. Shtemler, M. Mond, V. Cherniavskii, E. Golbraikh, Y. Nissim, An asymptotic model for the Kelvin–Helmholtz and Miles mechanisms of water wave generation by wind. Phys. Fluids 20 (9), 094106 (2008). https://doi.org/10.1063/1.2980350
- S. Taneda, Oscillation of the wake behind a flat plate parallel to the flow. J. Phys. Soc. Jpn. 13 (4), 418–425 (1958). https://doi.org/10.1143/JPSJ.13.418 CrossRefGoogle Scholar
- S.A. Thorpe, A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32 (4), 693–704 (1968). https://doi.org/10.1017/S0022112068000972 CrossRefGoogle Scholar
- N. Tillmark, P.H. Alfredsson, Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89–102 (1992)CrossRefGoogle Scholar
- H. van Haren, L. Gostiaux, E. Morozov, R. Tarakanov, Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys. Res. Lett. 41 (23), 8445–8451 (2014). https://doi.org/10.1002/2014GL062421. ISSN 1944-8007CrossRefGoogle Scholar
- H.F. Weinberger, A First Course in Partial Differential Equations: with Complex Variables and Transform Methods (Dover, New York, 1995)Google Scholar
- A.P. Willis, J. Peixinho, R.R. Kerswell, T. Mullin, Experimental and theoretical progress in pipe flow transition. Philos. Trans. A Math. Phys. Eng. Sci. 366 (1876), 2671– 2684 (2008). https://doi.org/10.1098/rsta.2008.0063. http://rsta.royalsocietypublishing.org/content/366/1876/2671. ISSN 1364-503X
- N. Zahibo, E. Pelinovsky, T. Talipova, A. Kozelkov, A. Kurkin, Analytical and numerical study of nonlinear effects at tsunami modeling. Appl. Math. Comput. 174 (2), 795–809 (2006). https://doi.org/10.1016/j.amc.2005.05.014. http://www.sciencedirect.com/science/article/pii/S0096300305005102. ISSN 0096-3003
Copyright information
© Springer Nature Switzerland AG 2019