Continuum Mechanics: Three Spatial Dimensions
Chapter
First Online:
- 1.5k Downloads
Abstract
The water in the ocean, the air in the room, and a rubber ball have a common characteristic, they appear to completely occupy their respective domains. What this means is that the material occupies every point in the domain.
References
- T. Alazard, Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180 (1), 1–73 (2006). https://doi.org/10.1007/s00205-005-0393-2. ISSN 1432-0673MathSciNetCrossRefGoogle Scholar
- R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics (Dover, New York, 1990)zbMATHGoogle Scholar
- R.C. Batra, Universal relations for transversely isotropic elastic materials. Math. Mech. Solids 7, 421–437 (2002)MathSciNetCrossRefGoogle Scholar
- J. Carlson, A. Jaffe, A. Wiles, The Millennium Prize Problems (American Mathematical Society, Providence, 2006). ISBN 9780821836798Google Scholar
- A. Colagrossi, D. Durante, J.B. Bonet, A. Souto-Iglesias, Discussion of Stokes’ hypothesis through the smoothed particle hydrodynamics model. Phys. Rev. E 96, 023101 (2017) https://doi.org/10.1103/PhysRevE.96.023101. https://link.aps.org/doi/10.1103/PhysRevE.96.023101
- M.S. Cramer, Numerical estimates for the bulk viscosity of ideal gases. Phys Fluids 24 (6), 066102 (2012). https://doi.org/10.1063/1.4729611
- M. Destrade, P.A. Martin, T.C.T. Ting, The incompressible limit in linear anisotropic elasticity, with applications to surface waves and elastostatics. J. Mech. Phys. Solids 50 (7), 1453–1468 (2002). https://doi.org/10.1016/S0022-5096(01)00121-1. http://www.sciencedirect.com/science/article/pii/S0022509601001211. ISSN 0022-5096
- A.S. Dukhin, P.J. Goetz, Bulk viscosity and compressibility measurement using acoustic spectroscopy. J. Chem. Phys. 130 (12), 124519 (2009). https://doi.org/10.1063/1.3095471
- A.C. Eringen, Microcontinuum Field Theories II. Fluent Media (Springer, New York, 2001)Google Scholar
- M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)CrossRefGoogle Scholar
- M.E. Gurtin, L.C. Martins, Cauchy’s theorem in classical physics. Arch. Ration. Mech. Anal. 60 (4), 305–324 (1976). https://doi.org/10.1007/BF00248882. ISSN 1432-0673MathSciNetCrossRefGoogle Scholar
- M.E. Gurtin, V.J. Mizel, W.O. Williams, A note on Cauchy’s stress theorem. J. Math. Anal. Appl. 22 (2), 398–401 (1968). https://doi.org/10.1016/0022-247X(68)90181-9. http://www.sciencedirect.com/science/article/pii/0022247X68901819. ISSN 0022-247X
- K. Hutter, K. Johnk, Continuum Methods of Physical Modeling (Springer, New York, 2004)CrossRefGoogle Scholar
- E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: the no-slip boundary condition, in Handbook of Experimental Fluid Dynamics, ed. by C. Tropea, A.L. Yarin, J.F. Foss (Springer, New York, 2007)Google Scholar
- P. Moon, D.E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions (Springer, New York, 1988)zbMATHGoogle Scholar
- A. Murdoch, Some primitive concepts in continuum mechanics regarded in terms of objective space-time molecular averaging: the key role played by inertial observers. J. Elast. 84, 69–97 (2006)CrossRefGoogle Scholar
- J. Nordström, A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71 (1), 365–385 (2017). https://doi.org/10.1007/s10915-016-0303-9 MathSciNetCrossRefGoogle Scholar
- R.S. Rivlin, J.L. Ericksen, Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955). http://www.jstor.org/stable/24900365. ISSN 19435282, 19435290
- S. Schochet, The incompressible limit in nonlinear elasticity. Commun. Math. Phys. 102 (2), 207–215 (1985). https://doi.org/10.1007/BF01229377. ISSN 1432-0916MathSciNetCrossRefGoogle Scholar
- C.G. Speziale, Comments on the material frame-indifference controversy. Phys. Rev. A At. Mol. Opt. Phys. 36, 4522–4525 (1987)CrossRefGoogle Scholar
- C.G. Speziale, A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51, 489–504 (1998)CrossRefGoogle Scholar
- B. Svendsen, A. Bertram, On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)MathSciNetCrossRefGoogle Scholar
- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (American Mathematical Society, Providence, 2001)CrossRefGoogle Scholar
- C.C. Wang, A new representation theorem for isotropic functions. Arch. Ration. Mech. Anal. 36 (3), 198–223 (1970). https://doi.org/10.1007/BF00272242. ISSN 1432-0673CrossRefGoogle Scholar
- H. Xiao, O.T. Bruhns, A. Meyers, On isotropic extension of anisotropic constitutive functions via structural tensors. ZAMM 86 (2), 151–161 (2006). https://doi.org/10.1002/zamm.200410226. https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200410226
Copyright information
© Springer Nature Switzerland AG 2019