Traffic Flow
Chapter
First Online:
- 1.5k Downloads
Abstract
In this chapter we again investigate the movement of objects along a one-dimensional path, but now the motion is directed rather than random.
References
- R.A. Blythe, M.R. Evans, Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40 (46), R333 (2007). http://stacks.iop.org/1751-8121/40/i=46/a=R01 MathSciNetzbMATHCrossRefGoogle Scholar
- D. Drew, Traffic Flow Theory and Control (McGraw Hill, New York, 1968)Google Scholar
- G.A. El, M.A. Hoefer, M. Shearer, Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. SIAM Rev. 59 (1), 3–61 (2017). https://doi.org/10.1137/15M1015650 MathSciNetzbMATHCrossRefGoogle Scholar
- ESO/L. Calcada/M. Kornmesser, Massive star birth (2019), https://luiscalcada.com/massive-star-birth. Accessed 10 Jan 2019
- L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. (American Mathematical Society, Providence, 2010)Google Scholar
- I. Gasser, On non-entropy solutions of scalar conservation laws for traffic flow. ZAMM 83, 137–143 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- O. Golinelli, K. Mallick, The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. J. Phys. A Math. Gen. 39 (41), 12679 (2006). http://stacks.iop.org/0305-4470/39/i=41/a=S03 MathSciNetzbMATHCrossRefGoogle Scholar
- H. Greenberg, An analysis of traffic flow. Oper. Res. 7, 79–85 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
- J.K. Knowles, On entropy conditions and traffic flow models. ZAMM 88, 64–73 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Society for Industrial and Applied Mathematics, Philadelphia, 1973). https://doi.org/10.1137/1.9781611970562. https://epubs.siam.org/doi/abs/10.1137/1.9781611970562
- M.J. Lighthill, G.B. Whitham, On kinematic waves; II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229A, 317–345 (1955)zbMATHGoogle Scholar
- Google Maps, Map of Arlington Memorial Bridge. Website (2007), http://maps.google.com/
- K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic. J. Phys. I France 2 (12), 2221–2229 (1992). https://doi.org/10.1051/jp1:1992277 CrossRefGoogle Scholar
- G.F. Newell, Nonlinear effects in the dynamics of car following. Oper. Res. 9, 209–229 (1961)zbMATHCrossRefGoogle Scholar
- H. Rakha, M. Van Aerde, Calibrating steady-state traffic stream and car-following models using loop detector data. Transp. Sci. 44 (2), 151–168 (2010). https://doi.org/10.1287/trsc.1090.0297 CrossRefGoogle Scholar
- L. Reese, A. Melbinger, E. Frey, Crowding of molecular motors determines microtubule depolymerization. Biophys. J. 101 (9), 2190–2200 (2011). https://doi.org/10.1016/j.bpj.2011.09.009. http://www.sciencedirect.com/science/article/pii/S0006349511010630. ISSN 0006-3495CrossRefGoogle Scholar
- P.I. Richards, Shock waves on the freeway. Oper. Res. 4, 42–51 (1956)zbMATHCrossRefGoogle Scholar
- T. Vanderbilt, Traffic: Why We Drive the Way We Do (and What It Says About Us) (Knopf, New York, 2008)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019