Advertisement

Traffic Flow

  • Mark H. Holmes
Chapter
  • 1.5k Downloads
Part of the Texts in Applied Mathematics book series (TAM, volume 56)

Abstract

In this chapter we again investigate the movement of objects along a one-dimensional path, but now the motion is directed rather than random.

References

  1. R.A. Blythe, M.R. Evans, Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40 (46), R333 (2007). http://stacks.iop.org/1751-8121/40/i=46/a=R01 MathSciNetzbMATHCrossRefGoogle Scholar
  2. D. Drew, Traffic Flow Theory and Control (McGraw Hill, New York, 1968)Google Scholar
  3. G.A. El, M.A. Hoefer, M. Shearer, Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. SIAM Rev. 59 (1), 3–61 (2017). https://doi.org/10.1137/15M1015650 MathSciNetzbMATHCrossRefGoogle Scholar
  4. ESO/L. Calcada/M. Kornmesser, Massive star birth (2019), https://luiscalcada.com/massive-star-birth. Accessed 10 Jan 2019
  5. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. (American Mathematical Society, Providence, 2010)Google Scholar
  6. I. Gasser, On non-entropy solutions of scalar conservation laws for traffic flow. ZAMM 83, 137–143 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. O. Golinelli, K. Mallick, The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. J. Phys. A Math. Gen. 39 (41), 12679 (2006). http://stacks.iop.org/0305-4470/39/i=41/a=S03 MathSciNetzbMATHCrossRefGoogle Scholar
  8. H. Greenberg, An analysis of traffic flow. Oper. Res. 7, 79–85 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  9. J.K. Knowles, On entropy conditions and traffic flow models. ZAMM 88, 64–73 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Society for Industrial and Applied Mathematics, Philadelphia, 1973). https://doi.org/10.1137/1.9781611970562. https://epubs.siam.org/doi/abs/10.1137/1.9781611970562
  11. M.J. Lighthill, G.B. Whitham, On kinematic waves; II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229A, 317–345 (1955)zbMATHGoogle Scholar
  12. Google Maps, Map of Arlington Memorial Bridge. Website (2007), http://maps.google.com/
  13. K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic. J. Phys. I France 2 (12), 2221–2229 (1992). https://doi.org/10.1051/jp1:1992277 CrossRefGoogle Scholar
  14. G.F. Newell, Nonlinear effects in the dynamics of car following. Oper. Res. 9, 209–229 (1961)zbMATHCrossRefGoogle Scholar
  15. H. Rakha, M. Van Aerde, Calibrating steady-state traffic stream and car-following models using loop detector data. Transp. Sci. 44 (2), 151–168 (2010).  https://doi.org/10.1287/trsc.1090.0297 CrossRefGoogle Scholar
  16. L. Reese, A. Melbinger, E. Frey, Crowding of molecular motors determines microtubule depolymerization. Biophys. J. 101 (9), 2190–2200 (2011). https://doi.org/10.1016/j.bpj.2011.09.009. http://www.sciencedirect.com/science/article/pii/S0006349511010630. ISSN 0006-3495CrossRefGoogle Scholar
  17. P.I. Richards, Shock waves on the freeway. Oper. Res. 4, 42–51 (1956)zbMATHCrossRefGoogle Scholar
  18. T. Vanderbilt, Traffic: Why We Drive the Way We Do (and What It Says About Us) (Knopf, New York, 2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mark H. Holmes
    • 1
  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations