Kinetics
Chapter
First Online:
- 1.5k Downloads
Abstract
We now investigate how to model, and analyze, the interactions of multiple species and how these interactions produce changes in their populations. Examples of such problems are below.
References
- D. Agnani, P. Acharya, E. Martinez, T.T. Tran, F. Abraham, F. Tobin, J. Bentz, Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm. PLoS ONE 6 (10), e25086-1–e25086-11 (2011)Google Scholar
- M. Braun, Differential Equations and Their Applications: An Introduction to Applied Mathematics, 4th edn. (Springer, New York, 1993)CrossRefGoogle Scholar
- G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1928)CrossRefGoogle Scholar
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd edn. (Wiley, New York, 2016)CrossRefGoogle Scholar
- R. Engbert, F. Drepper, Chance and chaos in population biology, models of recurrent epidemics and food chain dynamics. Chaos Solutions Fractals 4, 1147–1169 (1994)CrossRefGoogle Scholar
- I. Famili, B.O. Palsson, The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys. J. 85 (1), 16–26 (2003)CrossRefGoogle Scholar
- R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Am. Chem. Soc. 60, 1877–1884 (1974)Google Scholar
- R.J. Field, E. Koros, R.M. Noyes, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)Google Scholar
- D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer Undergraduate Mathematics Series (Springer, New York, 2010). ISBN 9780857291486Google Scholar
- J.K. Hale, H. Kocak, Dynamics and Bifurcations (Springer, New York, 1996)zbMATHGoogle Scholar
- V. Henri, Lois générales de l’action des diastases (Librairie Scientifique A. Hermann, Paris, 1903)Google Scholar
- N.E. Henriksen, F.Y. Hansen, Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics (Oxford University Press, Oxford, 2008)CrossRefGoogle Scholar
- M.H. Holmes, Introduction to Scientific Computing and Data Analysis. Texts in Computational Science and Engineering, vol. 13 (Springer, New York, 2016)Google Scholar
- F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47 (2), 81–116 (1972). https://doi.org/10.1007/BF00251225. ISSN 1432-0673MathSciNetCrossRefGoogle Scholar
- P.L. Houston, Chemical Kinetics and Reaction Dynamics (Dover, New York, 2006)Google Scholar
- S.V. Kryatov, E.V. Rybak-Akimova, A.Y. Nazarenko, P.D. Robinson, A dinuclear iron(III) complex with a bridging urea anion: implications for the urease mechanism. Chem. Commun. 11, 921–922 (2000)CrossRefGoogle Scholar
- L. Michaelis, M. Menten, Die kinetik der invertinwirkung. Biochem Z 49, 333–369 (1913)Google Scholar
- M. Polettini, M. Esposito, Irreversible thermodynamics of open chemical networks. i. emergent cycles and broken conservation laws. J. Chem. Phys. 141 (2), 024117 (2014). https://doi.org/10.1063/1.4886396
- M. Ramírez-Escudero, M. Gimeno-Pérez, B. González, D. Linde, Z. Merdzo, M. Fernández-Lobato, J. Sanz-Aparicio, Structural analysis of β-fructofuranosidase from Xanthophyllomyces dendrorhous reveals unique features and the crucial role of N-glycosylation in oligomerization and activity. J. Biol. Chem. 291 (13), 6843–6857 (2016). https://doi.org/10.1074/jbc.M115.708495. http://www.jbc.org/content/291/13/6843.abstract
- C. Reder, Metabolic control theory: a structural approach. J. Theor. Biol. 135 (2), 175–201 (1988) https://doi.org/10.1016/S0022-5193(88)80073-0. http://www.sciencedirect.com/science/article/pii/S0022519388800730. ISSN 0022-5193
- W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw-Hill, New York, 1976)zbMATHGoogle Scholar
- D. Schomburg, D. Stephan, Enzyme Handbook (Springer, New York, 1997)CrossRefGoogle Scholar
- S. Schuster, T. Hofer, Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. Faraday Trans. 87, 2561–2566 (1991) https://doi.org/10.1039/FT9918702561 CrossRefGoogle Scholar
- L.A. Segel, M. Slemrod, The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31, 446–477 (1989)MathSciNetCrossRefGoogle Scholar
- S.H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering, 2nd edn. (Westview Press, Cambridge, 2014)zbMATHGoogle Scholar
- Thoisoi2, Chemical Clock, Briggs-Rauscher oscillating Reaction! Website (2014), https://www.youtube.com/watch?v=WpBwlSn1XPQ
- T.T. Tran, A. Mittal, T. Aldinger, J.W. Polli, A. Ayrton, H. Ellens, J. Bentz, The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys. J. 88, 715–738 (2005)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019