Advertisement

Dimensional Analysis

  • Mark H. Holmes
Chapter
  • 1.7k Downloads
Part of the Texts in Applied Mathematics book series (TAM, volume 56)

Abstract

Before beginning the material on dimensional analysis, it is worth considering a simple example that demonstrates what we are doing. One that qualifies as simple is the situation of when an object is thrown upwards.

References

  1. AAVSO, American Association of Variable Star Observers. Website (2018), http://www.aavso.org
  2. T. Asai, K. Seo, O. Kobayashi, R. Sakashita, Fundamental aerodynamics of the soccer ball. Sports Eng. 10, 101–110 (2007)CrossRefGoogle Scholar
  3. J.R. Bamforth, S. Kalliadasis, J.H. Merkin, S.K. Scott, Modelling flow-distributed oscillations in the CDIMA reaction. Phys Chem Chem Phys 2, 4013–4021 (2000)CrossRefGoogle Scholar
  4. J. Bluck, NASA tunnels test tennis balls. Press Release, 00-58AR (2000), http://www.nasa.gov/centers/ames/news/releases/2000/00_58AR.html
  5. G.W. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002)zbMATHGoogle Scholar
  6. G.W. Bluman, A. Cheviakov, S. Anco, Applications of Symmetry Methods to Partial Differential Equations (Springer, New York, 2010)CrossRefGoogle Scholar
  7. B. Brixner, Trinity: 16 July 1945. Website (2018), http://www.radiochemistry.org/history/nuke_tests/trinity/index.html
  8. F.N.M. Brown, See the wind blow. Dept. Aerosp. Mech. Eng. Rep., Univ. of Notre Dame (1971)Google Scholar
  9. L.-Q. Chen, H. Ding, Two nonlinear models of a transversely vibrating string. Arch. Appl. Mech. 78 (5), 321–328 (2008). https://doi.org/10.1007/s00419-007-0164-7. ISSN 1432-0681CrossRefGoogle Scholar
  10. C.J. Efthimiou, M.D. Johnson, Domino waves. SIAM Rev. 49, 111–120 (2007)MathSciNetCrossRefGoogle Scholar
  11. O. el Moctar, University of Duisburg-Essen. Website (2018), https://www.uni-due.de/ISMT/
  12. S.R. Goodwill, S.B. Chin, and S.J. Haake, Aerodynamics of spinning and non-spinning tennis balls. J. Wind Eng. Ind. Aerodyn. 92, 935–958 (2004)CrossRefGoogle Scholar
  13. P. Gray, S.K. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. (Oxford University Press, Oxford, 1994)Google Scholar
  14. P.V. Hobbs, A.J. Kezweent, Splashing of a water drop. Exp. Fluids 155, 1112–1114 (1967)Google Scholar
  15. P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2000). ISBN 9780521497862Google Scholar
  16. J.A. Maroto, J. Duenas-Molina, J. de Dios, Experimental evaluation of the drag coefficient for smooth spheres by free fall experiments in old mines. Eur. J. Phys. 26, 323–330 (2005)CrossRefGoogle Scholar
  17. R.D. Mehta, Aerodynamics of sports balls. Ann. Rev. Fluid Mech. 17, 151–189 (1985)CrossRefGoogle Scholar
  18. Ames Research Center NASA, Wind tunnel images. Website (2018), https://www.hq.nasa.gov/office/aero/aavp/aetc/test/process-improvement-gallery.html
  19. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, New York, 2007)zbMATHGoogle Scholar
  20. R. Rioboo, C. Bauthier, J. Conti, M. Voue, J. De Coninck, Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 35, 648–652 (2003)CrossRefGoogle Scholar
  21. H. Sawada, T. Kunimasu, Sphere drag measurements with the NAL 60cm MSBS. J. Wind Eng. 98, 129–136 (2004)Google Scholar
  22. A.J. Smits, S. Ogg, Aerodynamics of the Golf Ball. Biomedical Engineering Principles in Sports (Kluwer Academic, Boston, 2004)Google Scholar
  23. W.J. Stronge, D. Shu, The domino effect: Successive destabilization by cooperative neighbours. Proc. R. Soc. A 418, 155–163 (1988)MathSciNetCrossRefGoogle Scholar
  24. O. Vallée, M. Soares, Airy Functions and Applications to Physics, 2nd edn. (Imperial College Press, London, 2010). https://doi.org/10.1142/p345. https://www.worldscientific.com/doi/abs/10.1142/p345

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mark H. Holmes
    • 1
  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations