Skip to main content

Mechanical-Probabilistic Model of Composite Patch-Repaired Aluminum Plates Under Cyclic Loading

  • Conference paper
  • First Online:
Advances in Materials, Mechanics and Manufacturing

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper presents a probabilistic analysis approach applied to finite element analysis for modeling a cracked aluminum plate repaired with composite patches under cyclic loading. For this, it is necessary to have a mechanical model and a probabilistic model correctly representing the behavior of this type of structures. The finite element method reported in this paper to analyse the evolution of the stress intensity factor and to evaluate the effect of the composite patch on increasing the life of cracked structures. The uncertainty of the geometric characteristics and mechanical properties of the Glass/Epoxy repair patch was presented in this study. The Probabilistic method applied to finite element modeling provides another alternative medium for structural analysis of repairing aluminum plates to achieve a robust and reliable design in a more efficient manner. The Monte Carlo simulation was used in this study and the reliability in this context is defined as the probability that the stress intensity factor is less than the toughness under cyclic stress. According to this study, the most influential parameter that has a significant effect on the stress intensity factor is the thickness of the adhesive and the thickness of the patch that must be tightly controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schütz W (1996) A history of fatigue. Eng Fract Mech 54(2):263–300

    Article  Google Scholar 

  2. Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue 25(8):679–702

    Article  Google Scholar 

  3. Bruneaux MA (2004) Durabilité des assemblages colles: modélisation mécanique et physico-chimique. Thèse doctorat. Ecole nationale des ponts et Chaussées. Spécialité: Structures et Matériaux. University Degli Studi di

    Google Scholar 

  4. Chung KH, Yang WH (2003) A study of the fatigue crack growth behaviour of thick aluminium panels repaired with a composite patch. Compos Struct 60:1–7

    Article  Google Scholar 

  5. Hosseini Toudeshky H, Sadeghi G, Daghyani HR (2005) Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass-epoxy composite patches. Compos Struct 71:401–406

    Article  Google Scholar 

  6. Bassetti A (2001) Lamelles précontraintes en fibres de carbone pour le renforcement de ponts rivetés endommagés par fatigue. Thèse, EPFL, Lausanne, Switzerland

    Google Scholar 

  7. Naboulsi S, Mall S (1997) Fatigue growth of adhesively repaired panel using perfectly and imperfectly composite patchs. Theoret Appl Fract Mech 28:13–28

    Article  Google Scholar 

  8. Sabelkin V, Mall S, Hansen MA, Vanderwaker RM, Derriso M (2007) Investigation into cracked aluminium plate repaired with bonded composite patch. Compos Struct 79:55–66

    Article  Google Scholar 

  9. Ait Yala A, Megueni A (2009) Optimization of composite patches repairs with the design of experiments method. Mater Des 30(2009):200–205

    Article  Google Scholar 

  10. Ergun E, Getiren TS, Muzaffer T (2010) Fatigue and fracture analysis of aluminum plate with composite patches under the hygrothermal effect. Compos Struct 92:2622–2631

    Article  Google Scholar 

  11. Andrieu-Renaud C, Sudret S, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84(1):75–86

    Article  Google Scholar 

  12. Muscolino G, Ricciardi G, Impollonia N (1999) Improved dynamic analysis of structures with mechanical uncertainties under deterministic input. Probab Eng Mech 15:199–212

    Article  Google Scholar 

  13. Ditlevsen O, Madsen HO. Structural reliability methods. Wiley, Chichester

    Google Scholar 

  14. Virkler DA, Hillberry BM, Goel PK (1980) The statistical nature of fatigue crack propagation. Trans ASME J Eng Mater Technol 101:148–153

    Article  Google Scholar 

  15. Králik J, Králik J Jr (2009) Probability and Sensitivity Analysis of Machine Foundation and Soil Interaction. Appl Comput Mech 3:87–100

    Google Scholar 

  16. Marek P, Brozzetti J, Gustar M. 2001 Probabilistic assessment of structures using Monte Carlo simulation, background, exercises and software. ITAM Academy of Sciences of the Czech Republic, GLOS s.r.o., Semily Czech Republic, Praha

    Google Scholar 

  17. Ming T, Cheng Hock T, Zahrizan bin Z, Ideris bin Z (2012) Application of probabilistic analysis in finite element modeling of prestressed inverted T-beam with web openings. Res J Appl Sci Eng Technol 4(4):350–366

    Google Scholar 

  18. Shui-Hua J, Dian-Qing L, Zhou CB (2014) Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method. Eng Geol 168:120–128. https://doi.org/10.1016/j.enggeo.2013.11.006

    Article  Google Scholar 

  19. Zhoua XY, Goslinga PD, Kaczmarczyk L, Pearce CJ (2016) Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures. Compos Struct 155:197–212. https://doi.org/10.1016/j.compstruct.2016.08.015

    Article  Google Scholar 

  20. Chen X, Ren H, Bil C (2014) Repair tolerance analysis for composite structures using probabilistic methodologies. J Air Craft 51(6):1997–2004. https://doi.org/10.2514/1.c032635

    Article  Google Scholar 

  21. Zhou X-Y, Gosling PD, Ullah Z, Kaczmarczyk L, Pearce CJ (2017) Stochastic multi-scale finite element based reliability analysis for laminated composite structures. Appl Math Model 45:457–473

    Article  MathSciNet  Google Scholar 

  22. Errouane H, Deghoul N, Sereir Z, Chateauneuf A (2017) Probability analysis of optimal design for fatigue crack of aluminium plate repaired with bonded composite patch. Struct Eng Mech 61(3):325–334

    Article  Google Scholar 

  23. Hosseini-Toudeshky H, Mohammadi B, Sadeghi G, Daghyani HR (2007) Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material. Compos Part A 38:1141–1148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houaria Errouane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Errouane, H., Hadjazi, K., Deghoul, N., Sereir, Z., Boussoufi, A. (2020). Mechanical-Probabilistic Model of Composite Patch-Repaired Aluminum Plates Under Cyclic Loading. In: Chaari, F., et al. Advances in Materials, Mechanics and Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-24247-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24247-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24246-6

  • Online ISBN: 978-3-030-24247-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics