Skip to main content

Smart and Assistive Walker – ASBGo: Rehabilitation Robotics: A Smart–Walker to Assist Ataxic Patients

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1170))

Abstract

Locomotion is an important human faculty that affects an individual’s life, bringing not only physical and psychosocial implications but also heavy social-economic consequences. Thus, it becomes paramount to find means (augmentative/assistive devices) to empower the user’s residual capacities and promote functional recovery.

In this context, a smart walker (SW) is explored for further clinical evaluation of ataxic patients during walker-assisted and to serve as a functional compensation and assist-as-needed personalized/customized rehabilitation tool, autonomously adapting assistance to the users’ needs, through innovative combination of real-time multimodal sensory information from SW built-in sensors. To meet the users’ needs, its design was weighed, considering to whom it is intended.

Thereby, this paper presents the system overview, focusing on design considerations, mechanical structure (frame and main components), electronic and mechatronic components, followed by its functionalities. Lastly, it presents results regarding the main functionalities, addressing clinical evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winter DA (2009) Biomechanics and motor control of human movement, fourth edition David A. Winter (cloth) 1. Human mechanics. 2. Motor ability. 3. Kinesiology. I. Title. QP303.W59

    Google Scholar 

  2. Buchman AS, Boyle PA, Leurgans SE, Barnes LL, Bennett DA (2011) Cognitive function is associated with the development of mobility impairments in community-dwelling elders. Am J Geriatr Psychiatry 19(6):571–580

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arnell P (2010) The biomechanics and motor control of human gait 74(2)

    Google Scholar 

  4. Frizera-Neto A, Ceres R, Rocon E, Pons JL (2011) Empowering and assisting natural human mobility: the Simbiosis Walker. Int J Adv Robot Syst 8(3):34–50

    Article  Google Scholar 

  5. Van Hook FW, Demonbreun D, Weiss BD (2003) Ambulatory devices for chronic gait disorders in the elderly. Am Fam Physician 67(8):1717–1724

    PubMed  Google Scholar 

  6. Morton SM, Bastian AMYJ (2014) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259

    Article  Google Scholar 

  7. López-Bastida J, Peña-Longobardo LM, Aranda-Reneo I, Tizzano E, Sefton M, Oliva-Moreno J (2017) Social/economic costs and health-related quality of life in patients with spinal muscular atrophy (SMA) in Spain. Orphanet J Rare Dis 12(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cernak K, Stevens V, Price R, Shumway-Cook A (2008) Locomotor training using body-weight support on a treadmill in therapy in a child with severe cerebellar ataxia. Phys Ther 88(1):88–97

    Google Scholar 

  9. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M (2014) Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol 261(1):213–223. https://doi.org/10.1007/s00415-013-7189-3

    Article  PubMed  Google Scholar 

  10. Neto AF, Elias A, Cifuentes C, Rodriguez C, Bastos T, Carelli R (2015) Smart walkers: advanced robotic human walking-aid systems. In: Mohammed S, Moreno J, Kong K, Amirat Y (eds) Intelligent assistive robots. Springer tracts in advanced robotics, vol 106. Springer, Cham

    Google Scholar 

  11. Orsini M, Bastos VH, Leite AA, MRG DF (2014) Neurological rehabilitation in patients with spinocerebellar ataxia: it’s really effective and permanent? Phys Med Rehabil Int 1(1):1–2

    Google Scholar 

  12. Ilg W, Synofzik M, Bro D, Giese MA, Schols L (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73(22):1823–1830

    Article  CAS  PubMed  Google Scholar 

  13. Bradley SM, Hernandez CR, Sinai M, York N, York N (2011) Geriatric assistive devices. Am Fam Physician 84(4):405–411

    PubMed  Google Scholar 

  14. Page S, Saint-Bauzel L, Rumeau P, Pasqui V (2017) Smart walkers: an application-oriented review. Robotica 35(6):1243–1262. https://doi.org/10.1017/S0263574716000023

    Article  Google Scholar 

  15. Martins MM, Santos CP, Frizera-Neto A, Ceres R (2012) Assistive mobility devices focusing on smart walkers: classification and review. Rob Auton Syst 60(4):548–562

    Article  Google Scholar 

  16. Martins M, Santos CP, Costa L, Frizera-Neto A (2013) Multivariate analysis of walker-assisted ambulation. In: Proceedings of 3rd Portuguese meeting on bioengineering ENBENG 2013 – B., Table I, Braga, Portugal, February 20–23, 2013, pp 23–26

    Google Scholar 

  17. Alves J, Seabra E, Caetano I, Gonçalves J, Serra J, Martins M, Santos CP (2016) Considerations and mechanical modifications on a Smart Walker, In: Proceedings of International Conference on Autonomous Robot Systems and Competitions, ICARSC’16, Bragança, Portugal, May 4–6, 2016, pp 1–6

    Google Scholar 

  18. Ilg W, Timmann D (2013) Gait ataxia – specific cerebellar influences and their rehabilitation typical signs of ataxic gait. Mov Disord 28(11):1566–1575

    Article  PubMed  Google Scholar 

  19. Martins M, Santos C, Seabra E, Frizera A, Ceres R (2014) Design, implementation and testing of a new user interface for a smart walker. In: Proceedings of IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC’14, Espinho, Portugal, May 14–15, 2014, pp 217–222

    Google Scholar 

  20. Bateni H, Heung E, Zettel J, Mcllroy WE, Maki BE (2004) Can use of walkers or canes impede lateral compensatory stepping movements? Gait Posture 20(1):74–83

    Article  PubMed  Google Scholar 

  21. Morris A, Donamukkala R, Kapuria A, Steinfeld A, Matthews JT, Dunbar-Jacob J, Thrun S (2003) A robotic walker that provides guidance, In: Proceedings of IEEE International conference on robotics and automation (Cat. No.03CH37422), Taipei, Taiwan, September 14–19, 2003, pp 1–6

    Google Scholar 

  22. Rentschler AJ, Simpson R, Cooper RA, Boninger ML (2008) Clinical evaluation of Guido robotic walker. J Rehab Res Dev 45(9):1281–1293

    Google Scholar 

  23. Grosset DG, Macphee GJA, Nairn M, Guideline Development Group (2010) Diagnosis and pharmacological management of Parkinson’s disease: summary of SIGN guidelines. BMJ 340:b5614

    Article  CAS  PubMed  Google Scholar 

  24. Kai Y, Arihara K, Kitaguchi S (2014) Development of a walking support robot with velocity and torque-based mechanical safety devices. In: Proceedings of IEEE/ASME international conference on Advanced Intelligent Mechatronics, AIM’14, Besançon, France, July 8–11, 2014, pp 1498–1503

    Google Scholar 

  25. Ko CY et al (2014) Assessment of forearm and plantar foot load in the elderly using a four-wheeled walker with armrest and the effect of armrest height. Clin Interv Aging 9:1759–1765

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawakami S, Kikuchi T, Hosaka M, Niino K, Anzai K, Tanaka T (2013) Evaluation of line-tracing controller of intelligently controllable walker. Adv Robot 27(7):493–502

    Article  Google Scholar 

  27. Ye J, Huang J, He J, Tao C, Wang X (2012) Development of a width-changeable intelligent walking-aid robot. In: Proceedings of international symposium on Micro-nanomechatronics and Human Science MHS’12, Nagoya, Japan, November 4–7, 2012, pp 358–363

    Google Scholar 

  28. Lu CK, Huang YC, Lee CJ (2015) Adaptive guidance system design for the assistive robotic walker. Neurocomputing 170:152–160

    Article  Google Scholar 

  29. Chugo D, Asawa T, Kitamura T, Songmin J, Takase K (2009) A motion control of a robotic walker for continuous assistance during standing, walking and seating operation. In: Proceedings of IEEE/RSJ international conference on Intelligent Robots and Systems, IROS’09, St. Louis, USA, October 11–15, 2009, pp 4487–4492

    Google Scholar 

  30. Jun HG et al (2011) Walking and sit-to-stand support system for elderly and disabled. In: Proceedings of IEEE international conference on rehabilitation robotics, Zurich, Switzerland, June 27–July 1, 2011, pp 1–5

    Google Scholar 

  31. Shi F, Cao Q, Leng C, Tan H (2010) Based on force sensing-controlled human-machine interaction system for walking assistant robot. In: Proceedings of World Congress Intelligent Control and Automation, WCICA 2010, Jinan, China, July 7–9, 2010, pp 6528–6533

    Google Scholar 

  32. Huang C, Wasson G, Alwan M, Sheth P, Ledoux A (2005) Shared navigational control and user intent detection in an intelligent walker. AAAI Fall Symp Tech Rep FS-05-02:59–66

    Google Scholar 

  33. Lee G, Ohnuma T, Chong NY (2010) Design and control of JAIST active robotic walker. Intell Serv Robot 3(3):125–135

    Article  CAS  Google Scholar 

  34. Sierra SD, Molina JF, Gomez DA, Munera MC, Cifuentes CA (2018) Development of an interface for human-robot interaction on a robotic platform for gait assistance: AGoRA smart Walker. In: Proceedings of IEEE ANDESCON technology and innovation for Andean Industry, Cali, Colombia, August 22–24, 2018, pp 1–7

    Google Scholar 

  35. Grondin SL, Li Q (2013) Intelligent control of a smart walker and its performance evaluation. In: IEEE International Conference on Rehabilitation Robotics, ICORR’13, Seattle, WA, June 24–26, 2013, pp 1–6

    Google Scholar 

  36. Martins M, Frizera A, Santos CP (2011) Review and classification of human gait training and rehabilitation devices. Assist Technol Res Ser 29:774–781

    Google Scholar 

  37. Cifuentes CA, Rodriguez C, Frizera-Neto A, Bastos-Filho TF, Carelli R (2016) Multimodal human-robot interaction for Walker-assisted gait. IEEE Syst J 10(3):933–943

    Article  Google Scholar 

  38. Werner C, Moustris GP, Tzafestas CS, Hauer K (2018) User-oriented evaluation of a robotic rollator that provides navigation assistance in frail older adults with and without cognitive impairment. Gerontology 64(3):278–290

    Article  PubMed  Google Scholar 

  39. Paulo J et al (2017) An innovative robotic walker for mobility assistance and lower limbs rehabilitation. In: Proceedings of IEEE 5th Portuguese meeting on bioengineering, ENBENG’17, Coimbra, Portugal, February 16–18, 2017, pp 1–4

    Google Scholar 

  40. MacNamara S, Lacey G (2002) A smart walker for the frail visually impaired. In: Proceedings of 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, April 24–28, 2000, pp 1354–1359

    Google Scholar 

  41. Graf B (2008) An adaptive guidance system for robotic walking aids. J Comput Inf Technol 17(1):109

    Article  Google Scholar 

  42. Wasson G, Gunderson J, Graves S (2001) Effective shared control in cooperative mobility aids. In: Proceedings of Fourteenth international Florida Artificial Intelligence Research Society conference, vol 1, Florida, May 21–23, 2001, pp 1–5

    Google Scholar 

  43. Hirata Y, Muraki A, Kosuge K (2006) Standing up and sitting down support using intelligent walker based on estimation of user states. In: Proceedings of IEEE International Conference on Mechatronics and Automation, ICMA’06, vol 2006, Luoyang, Henan, China, June 25–28, 2006, pp 13–18

    Google Scholar 

  44. Chang M-F, Mou W-H, Liao C-K, Fu L-C (2012) Design and implementation of an active robotic walker for Parkinson’s patients. In: Proceedings of SICE Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2012. Akita, Japan, August 20–23, 2012

    Google Scholar 

  45. Nejatbakhsh N, Kosuge K (2006) Adaptive guidance for the elderly based on user intent and physical impairment. In: Proceedings of the IEEE international workshop Robot and Human Interactive Communication, RO-MAN’06, Hatfield, UK, September 6–8, 2006, pp 510–514

    Google Scholar 

  46. Fast A, Wang FS, Adrezin RS, Cordaro MA, Ramis J, Sosner J (1995) The instrumented walker: usage patterns and forces. Arch Phys Med Rehabil 76(5):484–491

    Article  CAS  PubMed  Google Scholar 

  47. Ballesteros J, Urdiales C, Martinez AB, van Dieën JH (2016) On gait analysis estimation errors using force sensors on a smart Rollator. Sensors (Basel) 16(11):1–15

    Article  Google Scholar 

  48. Ohnuma T, Lee G, Chong NY (2011) Particle filter based feedback control of JAIST active robotic walker. In: Proceedings of IEEE international workshop on Robot and Human Interactive Communication, RO-MAN’11, Atlanta, GA, July 31–August 3, 2011, pp 264–269

    Google Scholar 

  49. Hu RZL, Hartfiel A, Tung J, Fakih A, Hoey J, Poupart P (2011) 3D pose tracking of walker users’ lower limb with a structured-light camera on a moving platform. In: Proceedings of IEEE computer society conference on Computer Vision and Pattern Recognition, CVPR’11. Colorado Springs, CO, June 20–25, 2011

    Google Scholar 

  50. Del Din S, Godfrey A, Rochester L (2016) Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: toward clinical and at home use. IEEE J Biomed Heal Informatics 20(3):838–847

    Article  Google Scholar 

  51. Wu H, Chien C, Jheng Y, Chen C, Chen H, Yu C (2011) Development of Intelligent Walker. J Life Support Eng 16(Supplement):71–72

    Google Scholar 

  52. Hirata Y, Muraki A, Kosuge K (2006) Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state. In: Proceedings of IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, vol 2006, Orrlando, FL, May 15–19, 2006, pp 3498–3503

    Google Scholar 

  53. Pallejà T, Teixidó M, Tresanchez M, Palacín J (2009) Measuring gait using a ground laser range sensor. Sensors 9(11):9133–9146

    Article  PubMed  Google Scholar 

  54. Paolini G et al (2014) Validation of a method for real time foot position and orientation tracking with microsoft kinect technology for use in virtual reality and treadmill based gait training programs. IEEE Trans Neural Syst Rehabil Eng 22(5):997–1002

    Article  PubMed  Google Scholar 

  55. Lim CD, Cheng CY, Wang CM, Chao Y, Fu LC (2015) Depth image based gait tracking and analysis via robotic walker. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA’15, Seattle, WA, May 25–30, 2015, pp 5916–5921

    Google Scholar 

  56. Joly C, Dune C, Gorce P, Rives P (2013) Feet and legs tracking using a smart rollator equipped with a Kinect. In: Work. Assistance Serv. Robot. a Hum. Environ. conjonction with IEEE/RSJ Int. Conf. Int. Rob. Sys, Tokyo

    Google Scholar 

  57. Stolze H et al (2002) Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry 73(3):310–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faria V, Silva J, Martins M, Santos C (2014) Dynamical system approach for obstacle avoidance in a Smart Walker device. In: Proceedings of IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC’14, Espinho Portugal, May 14–15, 2014, pp 261–266

    Google Scholar 

  59. Tereso A, Martins M, Santos CP, da Silva MV, Gonçalves L, Rocha L (2014) Detection of gait events and assessment of fall risk using accelerometers in assisted gait. In: Proceedings of 11th International Conference on Informatics in Control, Automation and Robotics, ICINCO’14, vol 1, Vienna, Austria, September 1–3, 2014, pp 788–793

    Google Scholar 

  60. Doheny EP et al (2012) Displacement of Centre of mass during quiet standing assessed using accelerometry in older fallers and non-fallers. In: Proceedings of 2012 annual international conference of the IEEE engineering in medicine and biology society, San Diego, CA, August 28–September 1, 2012, pp 3300–3303

    Google Scholar 

  61. Silva J, Santos C, Sequeira J (2013) Navigation architecture for mobile robots with temporal stabilization of movements. In: Proceedings of 9th workshop on Robot Motion and Control, RoMoCo’13, Wasowo, Poland, July 3–5, 2013, pp 209–214

    Google Scholar 

  62. Baker JM (2018) Gait disorders. Am J Med 131(6):602–607

    Article  PubMed  Google Scholar 

  63. Cernak K, Stevens V, Price R, Shumway-Cook A (2008) Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 88(1):88–97

    Article  PubMed  Google Scholar 

  64. Fritz NE, Cheek FM, Nichols-Larsen DS (2015) Motor-cognitive dual-task training in persons with neurologic disorders: a systematic review. J Neurol Phys Ther 39(3):142–153

    Article  PubMed  PubMed Central  Google Scholar 

  65. Plummer-D’Amato P, Kyvelidou A, Sternad D, Najafi B, Villalobos RM, Zurakowski D (2012) Training dual-task walking in community-dwelling adults within 1 year of stroke: a protocol for a single-blind randomized controlled trial. BMC Neurol 12(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ricklin S, Meyer-Heim A, van Hedel HJA (2018) Dual-task training of children with neuromotor disorders during robot-assisted gait therapy: prerequisites of patients and influence on leg muscle activity. J Neuroeng Rehabil 15(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  67. Labruyere R, Gerber CN, Birrer-Brutsch K, Meyer-Heim A, van Hedel HJA (2013) Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 34(11):3906–3915

    Article  PubMed  Google Scholar 

  68. Martins M, Santos CP, Page S, Saint-Bauzel L, Pasqui V, Mézière A (2015) Real-time gait assessment with an active depth sensor placed in a walker. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, ICORR’15, Singapore, August 11–14, 2015, pp 690–695

    Google Scholar 

  69. Martinez-Ramirez A, Weenk D, Lecumberri P, Verdonschot N, Pakvis D, Veltink PH (2013) Pre-operative ambulatory measurement of asymmetric lower limb loading during walking in total hip arthroplasty patients. J Neuroeng Rehabil 10:41

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the FEDER Funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI) and P2020 with the Reference Project EML under Grant POCI-01-0247-FEDER-033067 and through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreira, R., Alves, J., Matias, A., Santos, C. (2019). Smart and Assistive Walker – ASBGo: Rehabilitation Robotics: A Smart–Walker to Assist Ataxic Patients. In: Sequeira, J. (eds) Robotics in Healthcare. Advances in Experimental Medicine and Biology, vol 1170. Springer, Cham. https://doi.org/10.1007/978-3-030-24230-5_2

Download citation

Publish with us

Policies and ethics