Skip to main content

Myocardial Microstructure and Contractile Apparatus

  • Chapter
  • First Online:
Heart of the Matter

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1107 Accesses

Abstract

This chapter will address the anatomy of the heart from a microstructural perspective and review how the organisation of cardiomyocytes supports cardiac function. Both the helical arrangement of cardiomyocytes and the orientation of sheetlets will be examined. The potential of a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) will be discussed, in particular its ability to non-invasively assess the cardiac microstructure in both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braunwald E, Ross J, Sonnenblick EH (1967) Mechanisms of contraction of the normal and failing heart. N Engl J Med 277:910

    Article  CAS  PubMed  Google Scholar 

  2. Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. AJP Hear Circ Physiol. 295:H1243

    Article  CAS  Google Scholar 

  3. LeGrice I, Smaill B, Chai L, Edgar S, Gavin J, Hunter P (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 269:H571

    Article  CAS  Google Scholar 

  4. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173(4412):971–973

    Article  CAS  PubMed  Google Scholar 

  5. Lehman W, Craig R, Vibert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368(6466):65–67

    Article  CAS  PubMed  Google Scholar 

  6. Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg 32:231

    Article  PubMed  Google Scholar 

  7. Pettigrew JB (1864) On the arrangement of the muscular fibres in the ventricles of the vertebrate heart, with physiological remarks. Philos Trans R Soc Lond 154:445–500

    Article  Google Scholar 

  8. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347

    Article  PubMed  Google Scholar 

  9. Sands GB, Smaill BH, LeGrice IJ (2008) Virtual sectioning of cardiac tissue relative to fiber orientation. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society

    Google Scholar 

  10. Ferreira PF, Kilner PJ, Mcgill LA, Nielles-Vallespin S, Scott AD, Ho SY et al (2014) In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:87

    Article  PubMed  PubMed Central  Google Scholar 

  11. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP et al (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98:125

    Article  CAS  PubMed  Google Scholar 

  12. Kung GL, Nguyen TC, Itoh A, Skare S, Ingels NB, Miller DC et al (2011) The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging 34:1080

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harrington KB (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. AJP Hear Circ Physiol. 288(3):H1324–H1330

    Article  CAS  Google Scholar 

  14. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673

    Article  PubMed  Google Scholar 

  15. Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA (2000) Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology 214:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185

    Article  PubMed  Google Scholar 

  17. Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  CAS  PubMed  Google Scholar 

  18. Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12

    Article  CAS  PubMed  Google Scholar 

  19. Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54

    Article  CAS  PubMed  Google Scholar 

  20. Sonnenblick EH, Ross J, Covell JW, Spotnitz HM, Spiro D (1967) The ultrastructure of the heart in systole and diastole. Chantes in sarcomere length. Circ Res 21:423

    Article  CAS  PubMed  Google Scholar 

  21. Spotnitz HM, Spotnitz WD, Cottrell TS, Spiro D, Sonnenblick EH (1974) Cellular basis for volume related wall thickness changes in the rat left ventricle. J Mol Cell Cardiol 6:317

    Article  CAS  PubMed  Google Scholar 

  22. LeGrice IJ, Takayama Y, Covell JW (1995) Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77:182

    Article  CAS  PubMed  Google Scholar 

  23. Cheng A, Nguyen TC, Malinowski M, Daughters GT, Miller DC, Ingels NB (2008) Heterogeneity of left ventricular wall thickening mechanisms. Circulation 118:713

    Article  PubMed  PubMed Central  Google Scholar 

  24. Costa KD, Takayama Y, McCulloch AD, Covell JW (1999) Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol Circ Physiol. 276:H595

    Article  CAS  Google Scholar 

  25. Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J, Ferreira PF et al (2013) In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 70:454

    Article  PubMed  Google Scholar 

  26. Nielles-Vallespin S, Khalique Z, Ferreira PF, de Silva R, Scott AD, Kilner P et al (2017) Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J Am Coll Cardiol 69:661

    Article  PubMed  Google Scholar 

  27. Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ (1995) Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med 34:786

    Article  CAS  PubMed  Google Scholar 

  28. Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol Circ Physiol 275:H2308

    Article  CAS  Google Scholar 

  29. Holmes AA, Scollan DF, Winslow RL (2000) Direct histological validation of diffusion tensor MRI in formaldehyde- fixed myocardium. Magn Reson Med 44:157

    Article  CAS  PubMed  Google Scholar 

  30. Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol Circ Physiol. 274:H1627

    Article  CAS  Google Scholar 

  31. Chen J (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. AJP Hear Circ Physiol 289:H1898

    Article  CAS  Google Scholar 

  32. Rüssel IK, Götte MJW, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum AC (2009) Left ventricular torsion. An expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc Imaging 2(5):648–655

    Article  PubMed  Google Scholar 

  33. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK (2008) Twist mechanics of the left ventricle. Principles and application. JACC Cardiovasc Imaging 1(3):366–376

    Article  PubMed  Google Scholar 

  34. Young AA, Cowan BR (2012) Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:49

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu MT, Su MY, Huang YL, Chiou KR, Yang P, Pan HB et al (2009) Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac mr correlation with left ventricular structure and function. Circ Cardiovasc Imaging 2:32

    Article  PubMed  Google Scholar 

  36. Wu MT, Tseng WYI, Su MYM, Liu CP, Chiou KR, Wedeen VJ et al (2006) Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation 114:1036

    Article  PubMed  Google Scholar 

  37. Mekkaoui C, Jackowski MP, Kostis WJ, Stoeck CT, Thiagalingam A, Reese TG et al (2018) Myocardial scar delineation using diffusion tensor magnetic resonance tractography. J Am Heart Assoc 7(3):e007834

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD (2009) A functional and structural study of tropon in C mutations related to hypertrophic cardiomyopathy. J Biol Chem 284:19090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48:882

    Article  CAS  PubMed  Google Scholar 

  40. Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Kilner PJ, Kutys R et al (2018) Deranged myocyte microstructure in situs inversus totalis demonstrated by diffusion tensor cardiac magnetic resonance. JACC Cardiovasc Imaging 11(9):1360–1362

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohya Khalique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarvala, U., Khalique, Z. (2019). Myocardial Microstructure and Contractile Apparatus. In: Terracciano, C., Guymer, S. (eds) Heart of the Matter. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24219-0_4

Download citation

Publish with us

Policies and ethics