Skip to main content

Abstract

TWM -Traffic Weighted Multi-maps- is presented as a novel traffic route guidance model to reduce urban traffic congestion, focusing on individual trip and collective objectives considering citizens, individual multi-modal mobility, and heterogeneous traffic groups. They have different interests, goals and regulation, so new multi-objective cost functions and control systems are required. TWM is structured around a novel control paradigm, based on the generation and distribution of complementary cost maps for traffic collectives (fleets), oriented towards the application of differentiated traffic planning and control policies. Agents receive a customized view TWM of the network that is used to calculate individual route using standard means and tools. The research describes the TWM theoretical model and microscopic simulations over standard reference traffic network grids, different traffic congestion scenarios, and several driver’s adherences to the mechanism. Travel-time results show that TWM can have a high impact on the network performance, leading to enhancements from 20% to 50%. TWM is conceived to be compatible with existing traffic routing systems. The research has promising future evolution applying new algorithms, policies and network profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazzan, A., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29, 375–403 (2013). https://doi.org/10.1017/S0269888913000118

    Article  Google Scholar 

  2. Bazzan, A.L., Klügl, F.: Introduction to intelligent systems in traffic and transportation. Synth. Lect. Artif. Intell. Mach. Learn. 7(3), 1–137 (2013). https://doi.org/10.2200/s00553ed1v01y201312aim025. http://www.morganclaypool.com/doi/abs/10.2200/S00553ED1V01Y201312AIM025

    Article  Google Scholar 

  3. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - Simulation of Urban MObility: an overview. In: Omerovic, S.U.o.O.A., Simoni, R.I.R.T.P.D.A., Bobashev, R.I.R.T.P.G. (eds.) SIMUL 2011, The Third International Conference on Advances in System Simulation, pp. 63–68. ThinkMind, Barcelona, October 2011. http://elib.dlr.de/71460/

  4. Chen, Y., Bell, M.G., Bogenberger, K.: Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system. IEEE Trans. Intell. Transp. Syst. 8(1), 14–20 (2007)

    Article  Google Scholar 

  5. Claes, R., Holvoet, T.: Traffic coordination using aggregation-based traffic predictions. Intell. Syst. IEEE 29, 96–100 (2014). https://doi.org/10.1109/MIS.2014.73

    Article  Google Scholar 

  6. Dell’Orco, M., Marinelli, M.: Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System. Transp. Res. Part C Emerg. Technol. 85, 168–183 (2017). https://doi.org/10.1016/j.trc.2017.09.019

    Article  Google Scholar 

  7. Dere, E., Durdu, A.: Usage of the A* Algorithm to Find the Shortest Path in Transportation Systems (2018)

    Google Scholar 

  8. Dijkstra, E.: A note on two problems in connexion with graphs. Numb. Math. 1, 269 (1959)

    Article  MathSciNet  Google Scholar 

  9. Fukuda, D., Ma, J., Yamada, K., Shinkai, N.: Tokyo: Simulating Hyperpath-Based Vehicle Navigations and its Impact on Travel Time Reliability. In: The Multi-Agent Transport Simulation MATSim, pp. 517–522. Ubiquity Press Ltd. (2016). https://doi.org/10.5334/baw.92, https://www.oapen.org/download?type=document&docid=613715

    Chapter  Google Scholar 

  10. Gkoulalas-Divanis, A., Bettini, C. (eds.): Handbook of Mobile Data Privacy. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98161-1

    Book  Google Scholar 

  11. Guleria, A.: Traffic engineering in software defined networks: a survey. J. Telecommun. Inf. Technol. 4, 3–14 (2016)

    Google Scholar 

  12. Michael, G.H.B.: Hyperstar: a multi-path astar algorithm for risk averse vehicle navigation. Transp. Res. Part B Methodol. 43, 97 (2009)

    Article  Google Scholar 

  13. Hu, W., Jin, P.J.: Dynamic origin-destination estimation based on time delay correlation analysis on Location-based Social Network (LBSN) data. In: Transportation Research Board 97th Annual Meeting (2018). http://amonline.trb.org/

  14. Ibrahim, H., Far, B.H.: Data-oriented intelligent transportation systems. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), pp. 322–329, August 2014. https://doi.org/10.1109/IRI.2014.7051907

  15. Iqbal, M., Zhang, K., Iqbal, S., Tariq, I.: A fast and reliable Dijkstra algorithm for online shortest path. Int. J. Comput. Sci. Eng. 5, 24–27 (2018). https://doi.org/10.14445/23488387/IJCSE-V5I12P106

    Article  Google Scholar 

  16. Liang, Z., Wakahara, Y.: A route guidance system with personalized rerouting for reducing traveling time of vehicles in urban areas. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1541–1548 (2014). https://doi.org/10.1109/ITSC.2014.6957652

  17. Lin, S., Schutter, B.D., Zhou, Z., Xi, Y.: Multi-agent model-based predictive control for large-scale urban traffic networks using a serial scheme. IET Control Theory Appl. 9(3), 475–484 (2015). https://doi.org/10.1049/iet-cta.2014.0490. https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2014.0490

    Article  MathSciNet  Google Scholar 

  18. Luo, R., Bourdais, R., van den Boom, T.J., De Schutter, B.: Multi-agent model predictive control based on resource allocation coordination for a class of hybrid systems with limited information sharing. Eng. Appl. Artif. Intell. 58, 123–133 (2017). https://doi.org/10.1016/j.engappai.2016.12.005. https://linkinghub.elsevier.com/retrieve/pii/S0952197616302330

    Article  Google Scholar 

  19. Ma, J., Fukuda, D.: A hyperpath-based network generalized extreme-value model for route choice under uncertainties. Transp. Res. Part C Emerg. Technol. 59, 19–31 (2015)

    Article  Google Scholar 

  20. Namazi-Rad, M.-R., Padgham, L., Perez, P., Nagel, K., Bazzan, A. (eds.): ABMUS 2016. LNCS (LNAI), vol. 10051. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51957-9

    Book  Google Scholar 

  21. de Dios Ortúzar, J., Willumsen, L.G.: Modelling Transport, 3rd edn. Wiley, Chichester (2001)

    Google Scholar 

  22. Rezaei, M., Noori, H., Rahbari, D., Nickray, M.: ReFOCUS: a hybrid fog-cloud based intelligent traffic re-routing system. In: 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 0992–0998, December 2017. https://doi.org/10.1109/KBEI.2017.8324943. bibtex*[number=] ISSN:

  23. Sagara, H., Tanimoto, J.: A study on social diffusive impacts of a novel car-navigation-system sharing individual information in Urban traffic systems, IEEE Xplore, pp. 836–842 (2007). https://doi.org/10.1109/CEC.2007.4424557

  24. Sarker, A., Shen, H., Stankovic, J.A.: MORP: data-driven multi-objective route planning and optimization for electric vehicles. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, pp. 1–35 (2018). https://doi.org/10.1145/3161408

    Article  Google Scholar 

  25. Varga, L.: On intention-propagation-based prediction in autonomously self-adapting navigation. In: Proceedings - 2014 IEEE 8th International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, vol. 16, pp. 38–43 (2015). https://doi.org/10.1109/SASOW.2014.17

  26. Weerdt, M., Stein, S., Gerding, E., Robu, V., Jennings, N.R.: Intention-aware routing of electric vehicles. IEEE Trans. Intell. Transp. Syst. 17, 1–11 (2015). https://doi.org/10.1109/TITS.2015.2506900

    Article  Google Scholar 

  27. Cong, Z., De Schutter, B., Burger, M., Babuska, R.: Monitoring of traffic networks using mobile sensors. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 792–797. IEEE, Qingdao, October 2014. https://doi.org/10.1109/ITSC.2014.6957786. http://ieeexplore.ieee.org/document/6957786/

  28. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing. ACM Trans. Intell. Syst. Technol. 5, 1–55 (2014). https://doi.org/10.1145/2629592

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Grant TIN2016-80622-P and Grant TEC2013-45183-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Paricio Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia, A.P., Lopez-Carmona, M.A. (2019). Multimap Routing for Road Traffic Management. In: Demazeau, Y., Matson, E., Corchado, J., De la Prieta, F. (eds) Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection. PAAMS 2019. Lecture Notes in Computer Science(), vol 11523. Springer, Cham. https://doi.org/10.1007/978-3-030-24209-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24209-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24208-4

  • Online ISBN: 978-3-030-24209-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics