Skip to main content

Membrane Computing Aggregation (MCA): An Upgraded Framework for Transition P-Systems

  • Conference paper
  • First Online:
Bio-inspired Information and Communication Technologies (BICT 2019)

Abstract

MCA (Membrane computing aggregation is experimental computational frame. It is inspired by the inner properties of membrane cells (Bio-inspired system). It is capable of problem solving activities by maintaining a special, “meaningful” relationship with the internal/external environment, integrating its self-reproduction processes within the information flow of incoming and outgoing signals. Because these problem solving capabilities, MCA admits a crucial evolutionary tuning by mutations and recombination of theoretical genetic “bridges” in a so called “aggregation” process ruled by a hierarchical factor that enclosed those capabilities. Throughout the epigenetic capabilities and the cytoskeleton and cell adhesion functionalities, MCA model gain a complex population dynamics specifics and high scalability. Along its developmental process, it can differentiate into meaningful computational tissues and organs that respond to the conditions of the environment and therefore “solve” the morphogenetic/configurational problem. MCA, above all, represents the potential for a new computational paradigm inspired in the higher level processes of membrane cells, endowed with quasi universal processing capabilities beyond the possibilities of cellular automata of and agent processing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  2. Amir-Kroll, H., Sadot, A., Cohen, I.R., Harel, D.: GemCell: a generic platform for modelling multi-cellular. Theor. Comput. Sci. 391, 276–290 (2008)

    Article  MATH  Google Scholar 

  3. Arteta, A., Mingo, L.F., Castellanos, J.: An isomorphism based algorithm to solve complex problems. WSEAS Trans. Inf. Sci. Appl. 15, 27–36 (2018)

    Google Scholar 

  4. Arteta, A., Mingo, L.F., Gomez, N.: New approach to optimize membrane systems. J. Bioinform. 1(1), 1–6 (2014)

    Google Scholar 

  5. Arteta, A., Mingo, L.F., Gomez, N.: Membrane systems working with the P-factor: best strategy to solve complex problems. Adv. Sci. Lett. 19(5), 1490–1495 (2012)

    Article  Google Scholar 

  6. Arteta, A.: MEIA systems: membrane encrypted information application systems. Nat. Inf. Technol. Madr. Int. J. Inf. Theor. Appl. 19(2), 103–109 (2012)

    Google Scholar 

  7. Arteta, A., Gomez, N., Gonzalo, R.: Solving diophantine equations with a parallel membrane computing model. Int. J. Inf. Models Anal. 1, 220–225 (2012)

    Google Scholar 

  8. Arteta, A., Mingo, L.F., Gomez, N.: Solving complex problems with a bio-inspired model. Eng. Appl. Artif. Intell. 24(6), 919–927 (2011)

    Article  Google Scholar 

  9. Arteta, A., Fernández, L., Arroyo, F.: P-systems: study of randomness when applying evolution rules. In: International Book Series “Information Science and Computing, pp. 15–24 (2009)

    Google Scholar 

  10. Arteta, A., Goñi, A., Castellanos, J.: Analysis of P-systems under multiagents perspective. In: International Book Series “Information Science and Computing”, pp. 117–128 (2009)

    Google Scholar 

  11. Angeleska, A., et al.: RNA-guided DNA assembly. J. Theor. Biol. 248, 706–720 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ardelean, I., et al.: A computational model for cell differentiation. BioSystems 76(1–3), 169–176 (2004)

    Article  Google Scholar 

  13. Balazsi, G., Barabasi, A.-L., Oltvai, Z.N.: Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. PNAS 102(22), 7841–7846 (2005)

    Article  Google Scholar 

  14. Bashor, C.J., Horwitz, A.A., Peisajovich, S.J., Lim, W.A.: Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu. Rev. Biophys. 39, 515–537 (2010)

    Article  Google Scholar 

  15. Blow, N.: Systems biology: untangling the protein web. Nature 460, 415–418 (2009)

    Article  Google Scholar 

  16. Bray, D.: Wetware: A Computer in Every Living Cell: The Computer in Every Living Cell. Yale University Press, New Haven (2009)

    Google Scholar 

  17. Brooks, R.A.: The relationship between matter and life. Nature 409, 409–411 (2001)

    Article  Google Scholar 

  18. Cao, H., Romero-Campero, F.J., Heeb, S., Camara, M., Krasnogor, N.: Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)

    Article  Google Scholar 

  19. Carroll, S.B.: Endless Forms Most Beautiful. W.W. Norton, Chicago (2005)

    Google Scholar 

  20. Danchin, A.: Bacteria as computers making computers. FEMS Microbiol. Rev. 33(1), 3–26 (2009)

    Article  Google Scholar 

  21. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-59901-9

    Book  Google Scholar 

  22. Dassow, J., Mitrana, V.: On some operations suggested by genome evolution. In: Proceedings of the Second Pacific Symposium on Biocomputing, pp. 97–108 (1997)

    Google Scholar 

  23. Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary grammars and the structural language of nucleic acids. BioSystems 43, 169–177 (1997)

    Article  Google Scholar 

  24. Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices suggested by the genome evolution. Theor. Comput. Sci. 270(1–2), 701–731 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edelman, G.M.: Topobiology: An introduction to molecular embriology. Basic Books, New York (1988)

    Google Scholar 

  26. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells: Gene Assembly in Ciliate. Natural Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-06371-2

    Book  MATH  Google Scholar 

  27. Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester (2005)

    Google Scholar 

  28. Federici, D., Downing, K.: Evolution and development of a multicellular organism: scalability, resilience, and neutral complexification. Artif. Life 12(3), 381–409 (2006)

    Article  Google Scholar 

  29. Freund, R., Martin-Vide, C., Mitrana, V.: On some operations suggested by gene assembly in ciliates. New Gener. Comput. 20, 279–293 (2002)

    Article  MATH  Google Scholar 

  30. de Frutos, J.A., Fernández, L., Luengo, C., Arteta, A.: Improving active rules performance in new P system communication architectures. Inf. Technol. Knowl. 4(1), 3–18 (2010)

    Google Scholar 

  31. Arteta, A., Castellanos, A., Martinez, A.: Membrane computing: non deterministic technique to calculate extinguished multisets of objects. Int. J. Inf. Technol. Knowl. 4(1), 30–41 (2010)

    Google Scholar 

  32. de Frutos, J.A., Arroyo, F., Arteta, A.: Usefulness states in new P system communication architectures. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 169–186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7_13

    Chapter  Google Scholar 

  33. Han, J., et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430, 88–93 (2004)

    Article  Google Scholar 

  34. Haynes, K.A., Silver, P.A.: Eukaryotic systems broaden the scope of synthetic biology. JCB 187(5), 589–596 (2009)

    Article  Google Scholar 

  35. Ho, L., Crabtree, G.R.: Chromatin remodelling during development. Nature 463, 474–484 (2010)

    Article  Google Scholar 

  36. Holcombe, M., Bell, A.: Computational models of immunological pathways. In: Holcombe, M., Paton, R. (eds.) Information Processing in Cells and Tissues. Plenum Press, New York (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Arteta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arteta, A., Mingo, L.F., Gomez, N., Zhao, Y. (2019). Membrane Computing Aggregation (MCA): An Upgraded Framework for Transition P-Systems. In: Compagnoni, A., Casey, W., Cai, Y., Mishra, B. (eds) Bio-inspired Information and Communication Technologies. BICT 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-24202-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24202-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24201-5

  • Online ISBN: 978-3-030-24202-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics