Skip to main content

Space Partitioning and Maze Solving by Bacteria

  • Conference paper
  • First Online:
Bio-inspired Information and Communication Technologies (BICT 2019)

Abstract

Many bacteria dwell in micro-habitats, e.g., animal or plant tissues, waste matter, and soil. Consequently, bacterial space searching and partitioning is critical to their survival. However, the vast majority of studies regarding the motility of bacteria have been performed in open environments. To fill this gap in knowledge, we studied the behaviour of E. coli K12-wt in microfluidic channels with sub-10 µm dimensions, which present two types of geometries, namely a diamond-like network and a maze. The velocity, average time spent, and distance required to exit the networks, have been calculated to assess the intelligent-like behaviour of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler, M., Wehner, R.: Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol. Learn. Mem. 83(1), 1–12 (2005)

    Article  Google Scholar 

  2. Jin, N., Landgraf, T., Klein, S., Menzel, R.: Walking bumblebees memorize panorama and local cues in a laboratory test of navigation. Anim. Behav. 97, 13–23 (2014)

    Article  Google Scholar 

  3. Cohen, J.S., Burkhart, P., Jones, N., Innis, N.K.: The effects of an intramaze cue search rule on rat’s spatial working memory. Behav. Processes 22(1–2), 73–88 (1990)

    Article  Google Scholar 

  4. Lee, P.G.: Chemotaxis by Octopus maya Voss et Solis in a Y-maze. J. Exp. Mar. Biol. Ecol. 156(1), 53–67 (1992)

    Article  MathSciNet  Google Scholar 

  5. Schoenfeld, R., Moenich, N., Mueller, F.J., Lehmann, W., Leplow, B.: Search strategies in a human water maze analogue analyzed with automatic classification methods. Behav. Brain Res. 208(1), 169–177 (2010)

    Article  Google Scholar 

  6. Slusny, S., Neruda, R., Vidnerova, P.: Comparison of behavior-based and planning techniques on the small robot maze exploration problem. Neural Netw. 23(4), 560–567 (2010)

    Article  Google Scholar 

  7. Yu, Y., et al.: Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11(2), e0147754 (2016)

    Article  Google Scholar 

  8. Asenova, E., Lin, H.Y., Fu, E., Nicolau, D.V., Nicolau, D.V.: Optimal fungal space searching algorithms. IEEE Trans. Nanobiosci. 15, 613–618 (2016)

    Google Scholar 

  9. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  10. Hanson, K.L., Nicolau, D.V., Filipponi, L., Wang, L., Lee, A.P., Nicolau, D.V.: Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2(10), 1212–1220 (2006)

    Article  Google Scholar 

  11. Held, M., Lee, A.P., Edwards, C., Nicolau, D.V.: Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87(5–8), 786–789 (2010)

    Article  Google Scholar 

  12. Nayak, M., Perumal, A.S., Nicolau, D.V., van Delft, F.C.: Bacterial motility behaviour in sub-ten micron wide geometries. In: 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 382–384. IEEE (2018)

    Google Scholar 

  13. Männik, J., Driessen, R., Galajda, P., Keymer, J.E., Dekker, C.: Bacterial growth and motility in sub-micron constrictions. Proc. Natl. Acad. Sci. U. S. A. 106(35), 14861–14866 (2009)

    Article  Google Scholar 

  14. Libberton, B., Binz, M., Van Zalinge, H., Nicolau, D.V.: Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries. Phys. Rev. E 99, 012408 (2019)

    Article  Google Scholar 

  15. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented here was financially supported by the Defence Advanced Research Projects Agency (DARPA) under Grant Agreement No. HR0011-16-2-0028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan V. Nicolau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perumal, A.S., Nayak, M., Tokárová, V., Kašpar, O., Nicolau, D.V. (2019). Space Partitioning and Maze Solving by Bacteria. In: Compagnoni, A., Casey, W., Cai, Y., Mishra, B. (eds) Bio-inspired Information and Communication Technologies. BICT 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-24202-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24202-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24201-5

  • Online ISBN: 978-3-030-24202-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics