Skip to main content

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1380 Accesses

Abstract

In the previous chapter we have studied the consequences of integrability for the scattering theory. We saw that integrability implies a special form of the asymptotic wave function and factorisation of the multi-body scattering matrix. Our considerations were done for one-dimensional quantum-mechanical systems defined on an infinite line. To study thermodynamics, one needs, however, to confine the system in a finite volume.

A 1931 result that lay in obscurity for decades, Bethe’s solution to a quantum mechanical model now finds its way into everything from superconductors to string theory.

Murray T. Batchelor

The Bethe ansatz after 75 years,

Physics Today, January 2007

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As an example, consider the \( N =4\) case and the operators \(T_2=S_{32}S_{42}S_{12}\) and \(T_3=S_{43}S_{13}S_{23}\). We have

    $$\begin{aligned} T_2T_3= & {} S_{32}S_{42}S_{12}\cdot S_{43}S_{13}S_{23}=\underbrace{S_{32}S_{42}S_{43} }_\mathrm{YB} \cdot \underbrace{ S_{12}S_{13}S_{23} }_\mathrm{YB}= S_{43}S_{42}\underbrace{S_{32}\cdot S_{23}}_{=\mathbbm {1}}S_{13}S_{12}\\= & {} S_{43}S_{42}\cdot S_{13}S_{12}=S_{43}S_{13}\cdot S_{42}S_{12}=S_{43}S_{13}\underbrace{S_{23}\cdot S_{32}}_{=\mathbbm {1}}S_{42}S_{12}= T_3T_2\, . \end{aligned}$$
  2. 2.

    This could be understood from the fact that to minimise energy for N even, one of the momenta must take zero value, so that the odd number of remaining integers \({\mathcal {I}}_j\) is distributed asymmetrically and maximally close to zero in one of two possible ways.

  3. 3.

    This can be easily derived from the determinant formula (4.89).

  4. 4.

    This structure is an implementation of the Schur-Weyl duality.

  5. 5.

    That is the solutions which are not related to each other by permutations of some Bethe roots.

  6. 6.

    The reader undoubtedly noticed a striking similarity of this expression to the Bethe wave function (4.100) in the fundamental sector. The “particle” coordinates are now positive integers that form an ordered set. The formula (5.70) constitute the Bethe hypothesis which was the starting point to obtain the solution of the delta-interaction Bose gas.

  7. 7.

    From the point of view of our construction in Sect. 4.3.2 the S-matrix (5.75) coincides with Yang’s operator \(Y_1(p_1,p_2)\).

  8. 8.

    Compared to (5.28) we took the product of the Lax operators in an opposite order which is more convenient for our present treatment.

References

  1. Bethe, H.: On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys. 71, 205–226 (1931)

    Google Scholar 

  2. Yang, C.N.: Some exact results for the many body problems in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gaudin, M.: The Bethe Wavefunction (Translated from French original “La fonction d’onde de Bethe” (1983) by Caux, J.-S. ). Cambridge University Press (2014)

    Google Scholar 

  4. Sutherland, B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-body Problems, p. 381. World Scientific (2004)

    Google Scholar 

  5. Faddeev, L.D.: Quantum completely integral models of field theory. Sov. Sci. Rev. C 1, 107–155 (1980)

    MATH  Google Scholar 

  6. Takhtajan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surveys 34(5), 11–68 (1979). [Usp. Mat. Nauk 34, no.5, 13(1979)]

    Google Scholar 

  7. Kulish, P.P., Sklyanin, E.K.: Quantum spectral transform method. Recent developments. Lect. Notes Phys. 151, 61–119 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gutzwiller, M.C.: The Quantum Mechanical Toda Lattice. II. Annals Phys. 133, 304–331 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sklyanin, E.K.: Goryachev-Chaplygin top and the inverse scattering method. J. Sov. Math. 31, 3417–3431 (1985). Zap. Nauchn. Semin. 133, 236 (1984)

    Article  Google Scholar 

  10. Sklyanin, E.K.: The Quantum Toda chain. Lect. Notes Phys. 226, 196–233 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. Baxter, R.J.: Generalized ferroelectric model on a square lattice. Stud. Appl. Math. 50, 51–69 (1971)

    Article  MathSciNet  Google Scholar 

  12. Baxter, R.J.: Partition function of the eight vertex lattice model. Annals Phys. 70, 193–228 (1972). Annals Phys. 281, 187 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang, C.N., Yang, C.P.: Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction. J. Math. Phys. 10, 1115–1122 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  14. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge Monographs on Mathematical Physics (1997)

    MATH  Google Scholar 

  15. Essler, F.H.L., Frahm, H., Göhmann, F., Klümper, A., Korepin, V.E.: The One-Dimensional Hubbard Model. Cambridge University Press (2005)

    Google Scholar 

  16. Šamaj, L., Bajnok, Z.: Introduction to the Statistical Physics of Integrable Many-body Systems. Cambridge University Press (2013)

    Google Scholar 

  17. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. 1. The General solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lieb, E.H., Liniger, W.: Exact analysis of an interacting bose gas. II.The excitation spectrum. Phys. Rev. 130, 1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  19. Faddeev, L.D.: How algebraic Bethe ansatz works for integrable model. In: Proceedings of Relativistic gravitation and gravitational radiation: Les Houches School of Physics, France, 26 Sept.–6 Oct., 1995, pp. 149–219 (1996)

    Google Scholar 

  20. Sutherland, B.: Further results for the many-body problem in one dimension. Phys. Rev. Lett. 20, 98–100 (1968)

    Article  ADS  Google Scholar 

  21. Kulish, P.P., Reshetikhin, N.Yu.: Diagonalization of \(GL(N)\) invariant transfer matrices and quantum n wave system (Lee model). J. Phys. A 16, L591–L596 (1983)

    Google Scholar 

  22. Bloch, F.Z.: Zur Theorie des Ferromagnetismus. Z. Physik 61, 206 (1930)

    Article  ADS  Google Scholar 

  23. Karbach, M., Muller, G.: Introduction to the Bethe ansatz I. Comput. Phys. 11, 36–43 (1997)

    Article  ADS  Google Scholar 

  24. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer-Verlag, Berlin Heidelberg (1987)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Arutyunov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arutyunov, G. (2019). Bethe Ansatz. In: Elements of Classical and Quantum Integrable Systems . UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24198-8_5

Download citation

Publish with us

Policies and ethics