Skip to main content

Search for the Next Very-High-Energy Pulsar

  • Chapter
  • First Online:
  • 278 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

While over 200 pulsars are known to emit gamma rays in the MeV to GeV regime, only two pulsars have been detected at Very High Energy (vhe, \({\gtrsim }100\) GeV) so far: the Crab pulsar in the Northern Hemisphere and the Vela pulsar in the Southern Hemisphere.

Among the 27 associations with known pulsars, we find 20 with significant pulsations above 10 GeV, and 12 with pulsations above 25 GeV, suggesting that the Crab pulsar will not remain the only pulsar to be detected by current and future IACTs.

The Fermi-lat Collaboration, 2013

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://pshk.org.hk/, last accessed 20/06/2017.

  2. 2.

    https://github.com/gammapy/enrico/.

  3. 3.

    https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/.

  4. 4.

    https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/Fermi_plug_doc.pdf, last accessed 26/06/2017.

  5. 5.

    For this fitting procedure we make use of the GeoTOA tool developed by M. Kerr and P. Ray (https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/GeoTOA_README.txt, last accessed 02/04/2018).

  6. 6.

    http://dan.iel.fm/emcee/current, last accessed 26/06/2017.

  7. 7.

    https://github.com/nanograv/PINT, last accessed 27/06/2017.

  8. 8.

    https://fermi.gsfc.nasa.gov/science/mtgs/symposia/2015/program/wednesday/session12B/PSazParkinson.pdf, last accessed 28/06/2017.

  9. 9.

    http://www.atnf.csiro.au/research/pulsar/psrcat/, last accessed 28/06/2017.

References

  1. Atwood WB et al (2009) The large area telescope on the Fermi Gamma-Ray space telescope mission. Astrophys J 697(2):1071–1102. https://doi.org/10.1088/0004-637X/697/2/1071

    Article  ADS  Google Scholar 

  2. Holler M et al (2015) Observations of the Crab Nebula with H.E.S.S. Phase II. In: 34th international cosmic ray conference. The Hague, Netherlands, page Id 1046

    Google Scholar 

  3. Dazzi F et al (2015) Performance studies of the new stereoscopic sum-Trigger-II of MAGIC after one year of operation. In: 34th international cosmic ray conference. The Hague, Netherlands, page Id 608

    Google Scholar 

  4. Abdo AA et al (2013) The second Fermi large area telescope catalog of Gamma-Ray pulsars. Astrophys J Suppl Ser 208(2):17. https://doi.org/10.1088/0067-0049/208/2/17

    Article  ADS  Google Scholar 

  5. Ackermann M et al (2016) 2FHL: the second catalog of hard Fermi-LAT sources. Astrophys J Suppl Ser 222(1):5. https://doi.org/10.3847/0067-0049/222/1/5

    Article  ADS  MathSciNet  Google Scholar 

  6. Ackermann M et al (2013) The first Fermi-LAT catalog of sources above 10 GeV. Astrophys J Suppl Ser 209(2):34. https://doi.org/10.1088/0067-0049/209/2/34

    Article  ADS  Google Scholar 

  7. Sanchez DA, Deil C (2013) Enrico: a python package to simplify Fermi-LAT analysis. In: 33rd international cosmic ray conference, vol 3. Rio de Janeiro, Brazil, page 6361

    Google Scholar 

  8. Kerr M (2010) Likelihood methods for the detection and characterization of Gamma-ray pulsars with the Fermi large area telescope. Ph.D. thesis

    Google Scholar 

  9. Ackermann M et al (2012) The Fermi large area telescope on orbit: event classification, instrument response functions, and calibration. Astrophys J Suppl Ser 203(1):4. https://doi.org/10.1088/0067-0049/203/1/4

    Article  ADS  Google Scholar 

  10. Atwood W et al (2013) Pass 8: toward the full realization of the Fermi-LAT scientific potential. arXiv

    Google Scholar 

  11. Acero F et al (2015) Fermi large area telescope third source catalog. Astrophys J Suppl Ser 218(2):23. https://doi.org/10.1088/0067-0049/218/2/23

    Article  ADS  Google Scholar 

  12. Hobbs GB et al (2006) Tempo2, a new pulsar-timing package - I. An overview. Monthly Not R Astron Soc 369(2):655–672. https://doi.org/10.1111/j.1365-2966.2006.10302.x

    Article  ADS  Google Scholar 

  13. Kerr M et al (2015) Timing Gamma-Ray pulsars with the Fermi large area telescope: timing noise and astronometry. Astrophys J 814(2):128. https://doi.org/10.1088/0004-637X/814/2/128

    Article  ADS  Google Scholar 

  14. Pletsch HJ, Clark CJ (2015) Gamma-Ray timing of redback PSR J2339–0533: hints for gravitational quadrupole moment changes. Astrophys J 807(1):18. https://doi.org/10.1088/0004-637X/807/1/18

    Article  ADS  Google Scholar 

  15. Kerr M (2011) Improving sensitivity to weak pulsations with photon probability weighting. Astrophys J 732(1):38. https://doi.org/10.1088/0004-637X/732/1/38

    Article  ADS  Google Scholar 

  16. de Jager OC et al (1989) A powerful test for weak periodic signals with unknown light curve shape in sparse data. Astron Astrophys 221:180–190

    ADS  Google Scholar 

  17. Ray PS et al (2011) Precise Gamma-Ray timing and radio observations of 17 Fermi Gamma-ray pulsars. Astrophys J Suppl Ser 194(2):17. https://doi.org/10.1088/0067-0049/194/2/17

    Article  ADS  Google Scholar 

  18. Foreman-Mackey D et al (2013) emcee : the MCMC Hammer. Publ Astron Soc Pac 125(925):306–312. https://doi.org/10.1086/670067

    Article  ADS  Google Scholar 

  19. Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the crab and other pulsars. Astrophys J 811(1):63. https://doi.org/10.1088/0004-637X/811/1/63

    Article  ADS  Google Scholar 

  20. Blandford R, Teukolsky SA (1976) Arrival-time analysis for a pulsar in a binary system. Astrophys J 205:580. https://doi.org/10.1086/154315

    Article  ADS  Google Scholar 

  21. Lommen AN et al (2000) New pulsars from an arecibo drift scan search. Astrophys J 545(2):1007–1014. https://doi.org/10.1086/317841

    Article  ADS  Google Scholar 

  22. Manchester RN et al (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006. https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  23. Hessels JWT et al (2011) A 350-MHz GBT survey of 50 faint Fermi \(\gamma \)-ray sources for radio millisecond pulsars’. In: Radio pulsars: an astrophysical key to unlock the secrets of the universe, pp 40–43. https://doi.org/10.1063/1.3615072

  24. Navarro J et al (1995) A very luminous binary millisecond pulsar. Astrophys J, 455(1). https://doi.org/10.1086/309816

  25. Ransom SM et al (2011) Three millisecond pulsars in Fermi LAT unassociated bright sources. Astrophys J 727(1):L16. https://doi.org/10.1088/2041-8205/727/1/L16

    Article  ADS  Google Scholar 

  26. Abdo AA et al (2009a) Fermi/large area telescope bright gamma-ray source list. Astrophys J Suppl Ser 183(1):46–66. https://doi.org/10.1088/0067-0049/183/1/46

    Article  ADS  Google Scholar 

  27. Aliu E et al (2015) A search for pulsations from geminga above 100 GeV with VERITAS. Astrophys J 800(1):61. https://doi.org/10.1088/0004-637X/800/1/61

    Article  ADS  Google Scholar 

  28. Ahnen ML et al (2016) Search for VHE gamma-ray emission from geminga pulsar and nebula with the MAGIC telescopes. Astron Astrophys 591:A138. https://doi.org/10.1051/0004-6361/201527722

    Article  Google Scholar 

  29. Lundgren SC et al (1995) A millisecond pulsar in a 6 hour orbit: PSR J0751+1807. Astrophys J 453:419. https://doi.org/10.1086/176402

    Article  ADS  Google Scholar 

  30. Backer DC et al (1982) A millisecond pulsar. Nature 300(5893):615–618. https://doi.org/10.1038/300615a0

    Article  ADS  Google Scholar 

  31. Xing Y, Wang Z (2016) Fermi study of \(\gamma \)-ray millisecond pulsars: the spectral shape and pulsed emission from J0614–3329 up to 60 GeV. Astrophys J 831(2):143. https://doi.org/10.3847/0004-637X/831/2/143

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carreto Fidalgo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carreto Fidalgo, D. (2019). Search for the Next Very-High-Energy Pulsar. In: Revealing the Most Energetic Light from Pulsars and Their Nebulae. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24194-0_7

Download citation

Publish with us

Policies and ethics