Analysis of MAGIC’s Data Set of the Crab Pulsar
Chapter
First Online:
- 134 Downloads
Abstract
Magic observations are programed yearly and grouped into approximately one year long observation cycles, the first one beginning in May 2005.
References
- 1.Aleksić J et al (2015) Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes. J High Energy Astrophys 5–6:30–38. https://doi.org/10.1016/j.jheap.2015.01.002ADSCrossRefGoogle Scholar
- 2.Garrido Terrats D (2015) Limits to the violation of Lorentz invariance using the emission of the Crab pulsar at TeV energies, discovered with archival data from the MAGIC telescopes. PhD thesisGoogle Scholar
- 3.Ansoldi S et al (2016) Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astron Astrophys 585:A133. https://doi.org/10.1051/0004-6361/201526853CrossRefGoogle Scholar
- 4.Aleksić J et al (2012) Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. Astron Astrophys 540:A69. https://doi.org/10.1051/0004-6361/201118166CrossRefGoogle Scholar
- 5.Zanin R et al (2013) MARS, the MAGIC analysis and reconstruction software. In: 33rd international cosmic ray conference, page id 773. Rio de Janeiro, BrazilGoogle Scholar
- 6.Hillas AM (1985) Cherenkov light images of EAS produced by primary gamma rays and by nuclei. In: 19th International cosmic ray conference, p 445. La Jolla, USAGoogle Scholar
- 7.Aleksić J et al (2012) Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart Phys 35(7):435–448. https://doi.org/10.1016/j.astropartphys.2011.11.007ADSCrossRefGoogle Scholar
- 8.Hobbs GB et al (2006) TEMPO2, a new pulsar-timing package - I. An overview. Mon Not R Astron Soc 369(2):655–672. https://doi.org/10.1111/j.1365-2966.2006.10302.xADSCrossRefGoogle Scholar
- 9.Giavitto G (2013) Observing the VHE Gamma-Ray Sky with MAGIC Telescopes: the Blazar B3 2247+381 and the Crab Pulsar. PhD thesisGoogle Scholar
- 10.Lyne AG et al (1993) 23 years of Crab pulsar rotational history. Mon Not R Astron Soc 265(4):1003–1012. https://doi.org/10.1093/mnras/265.4.1003ADSCrossRefGoogle Scholar
- 11.Li TP, Ma YQ (1983) Analysis methods for results in gamma-ray astronomy. Astrophys J 272:317–324ADSCrossRefGoogle Scholar
- 12.Aliu E et al (2011) Detection of pulsed gamma rays above 100 GeV from the crab pulsar. Science 334(6052):69–72. https://doi.org/10.1126/science.1208192ADSCrossRefGoogle Scholar
- 13.Fierro JM et al (1998) Phase-resolved studies of the high-energy gamma-ray emission from the Crab, Geminga, and Vela pulsars. Astrophys J 494(2):734–746. https://doi.org/10.1086/305219ADSCrossRefGoogle Scholar
- 14.Aleksić J et al (2014) Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astron Astrophys 565:L12. https://doi.org/10.1051/0004-6361/201423664ADSCrossRefGoogle Scholar
- 15.de Jager OC et al (1989) A powerful test for weak periodic signals with unknown light curve shape in sparse data. Astron Astrophys 221:180–190ADSGoogle Scholar
- 16.Albert J et al (2007) Unfolding of differential energy spectra in the MAGIC experiment. Nucl Instrum Methods Phys Res Sect A 583(2–3):494–506. https://doi.org/10.1016/j.nima.2007.09.048ADSCrossRefGoogle Scholar
- 17.Rolke WA et al (2005) Limits and confidence intervals in the presence of nuisance parameters. Nucl Instrum Methods Phys Res Sect A 551(2–3):493–503. https://doi.org/10.1016/j.nima.2005.05.068ADSCrossRefGoogle Scholar
- 18.Albert J et al (2008) VHE \(\gamma \)-ray observation of the crab nebula and its pulsar with the MAGIC telescope. Astrophys J 674(2):1037–1055. https://doi.org/10.1086/525270ADSCrossRefGoogle Scholar
- 19.Aleksić J et al (2016) The major upgrade of the MAGIC telescopes, part II: A performance study using observations of the Crab Nebula. Astropart Phys 72:76–94. https://doi.org/10.1016/j.astropartphys.2015.02.005ADSCrossRefGoogle Scholar
- 20.Eikenberry SS et al (1997) High time resolution infrared observations of the Crab Nebula pulsar and the pulsar emission mechanism. Astrophys J 477(1):465–474. https://doi.org/10.1086/303701ADSCrossRefGoogle Scholar
- 21.Abdo AA et al (2010) Fermi large area telescope observations of the Crab Pulsar and Nebula. Astrophys J 708(2):1254–1267. https://doi.org/10.1088/0004-637X/708/2/1254ADSCrossRefGoogle Scholar
- 22.Baring MG (2004) High-energy emission from pulsars: the polar cap scenario. Adv Space Res 33(4):552–560. https://doi.org/10.1016/j.asr.2003.08.020ADSCrossRefGoogle Scholar
- 23.Baring MG, Harding AK (2001) Photon splitting and pair creation in highly magnetized pulsars. Astrophys J 547(2):929–948. https://doi.org/10.1086/318390ADSCrossRefGoogle Scholar
- 24.Lee KJ et al (2010) Low bounds for pulsar \(\gamma \)-ray radiation altitudes. Mon Not R Astron Soc 405(3):2103. https://doi.org/10.1111/j.1365-2966.2010.16600.xADSCrossRefGoogle Scholar
- 25.Muslimov AG, Harding AK (2003) Extended acceleration in slot gaps and pulsar high-energy emission. Astrophys J 588(1):430–440. https://doi.org/10.1086/368162ADSCrossRefGoogle Scholar
- 26.Du YJ et al (2012) Radio-to-TeV phase-resolved emission from the crab pulsar: the annular gap model. Astrophys J 748(2):84. https://doi.org/10.1088/0004-637X/748/2/84ADSCrossRefGoogle Scholar
- 27.Lyutikov M et al (2012) The very-high energy emission from pulsars: a case for inverse compton scattering. Astrophys J 754(1):33. https://doi.org/10.1088/0004-637X/754/1/33ADSCrossRefGoogle Scholar
- 28.Vigano D et al (2015) An assessment of the pulsar outer gap model-II. Implications for the predicted -ray spectra. Mon Not R Astron Soc 447(3):2649–2657. https://doi.org/10.1093/mnras/stu2565ADSCrossRefGoogle Scholar
- 29.Vigano D et al (2015) An assessment of the pulsar outer gap model - I. Assumptions, uncertainties, and implications on the gap size and the accelerating field. Mon Not R Astron Soc 447(3):2631–2648. https://doi.org/10.1093/mnras/stu2564ADSCrossRefGoogle Scholar
- 30.Grenier IA, Harding AK (2015) Gamma-ray pulsars: a gold mine. C R Phys 16(6–7):641–660. https://doi.org/10.1016/j.crhy.2015.08.013ADSCrossRefGoogle Scholar
- 31.Kalapotharakos C et al (2014) Gamma-ray emission in dissipative pulsar magnetospheres: from theory to fermi observations. Astrophys J 793(2):97. https://doi.org/10.1088/0004-637X/793/2/97ADSCrossRefGoogle Scholar
- 32.Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40. https://doi.org/10.1088/2041-8205/798/2/L40ADSCrossRefGoogle Scholar
- 33.Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the crab and other pulsars. Astrophys J 811(1):63. https://doi.org/10.1088/0004-637X/811/1/63ADSCrossRefGoogle Scholar
- 34.Aharonian FA et al (2012) Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar. https://doi.org/10.1038/nature10793ADSCrossRefGoogle Scholar
- 35.Osmanov Z, Rieger FM (2017) Pulsed VHE emission from the Crab Pulsar in the context of magnetocentrifugal particle acceleration. Mon Not R Astron Soc 464(2):1347–1352. https://doi.org/10.1093/mnras/stw2408ADSCrossRefGoogle Scholar
- 36.Arons J (2012) Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci Rev 173(1–4):341–367. https://doi.org/10.1007/s11214-012-9885-1ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019