Advertisement

Analysis of MAGIC’s Data Set of the Crab Pulsar

  • David Carreto FidalgoEmail author
Chapter
  • 134 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Magic observations are programed yearly and grouped into approximately one year long observation cycles, the first one beginning in May 2005.

References

  1. 1.
    Aleksić J et al (2015) Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes. J High Energy Astrophys 5–6:30–38.  https://doi.org/10.1016/j.jheap.2015.01.002ADSCrossRefGoogle Scholar
  2. 2.
    Garrido Terrats D (2015) Limits to the violation of Lorentz invariance using the emission of the Crab pulsar at TeV energies, discovered with archival data from the MAGIC telescopes. PhD thesisGoogle Scholar
  3. 3.
    Ansoldi S et al (2016) Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astron Astrophys 585:A133.  https://doi.org/10.1051/0004-6361/201526853CrossRefGoogle Scholar
  4. 4.
    Aleksić J et al (2012) Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. Astron Astrophys 540:A69.  https://doi.org/10.1051/0004-6361/201118166CrossRefGoogle Scholar
  5. 5.
    Zanin R et al (2013) MARS, the MAGIC analysis and reconstruction software. In: 33rd international cosmic ray conference, page id 773. Rio de Janeiro, BrazilGoogle Scholar
  6. 6.
    Hillas AM (1985) Cherenkov light images of EAS produced by primary gamma rays and by nuclei. In: 19th International cosmic ray conference, p 445. La Jolla, USAGoogle Scholar
  7. 7.
    Aleksić J et al (2012) Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart Phys 35(7):435–448.  https://doi.org/10.1016/j.astropartphys.2011.11.007ADSCrossRefGoogle Scholar
  8. 8.
    Hobbs GB et al (2006) TEMPO2, a new pulsar-timing package - I. An overview. Mon Not R Astron Soc 369(2):655–672.  https://doi.org/10.1111/j.1365-2966.2006.10302.xADSCrossRefGoogle Scholar
  9. 9.
    Giavitto G (2013) Observing the VHE Gamma-Ray Sky with MAGIC Telescopes: the Blazar B3 2247+381 and the Crab Pulsar. PhD thesisGoogle Scholar
  10. 10.
    Lyne AG et al (1993) 23 years of Crab pulsar rotational history. Mon Not R Astron Soc 265(4):1003–1012.  https://doi.org/10.1093/mnras/265.4.1003ADSCrossRefGoogle Scholar
  11. 11.
    Li TP, Ma YQ (1983) Analysis methods for results in gamma-ray astronomy. Astrophys J 272:317–324ADSCrossRefGoogle Scholar
  12. 12.
    Aliu E et al (2011) Detection of pulsed gamma rays above 100 GeV from the crab pulsar. Science 334(6052):69–72.  https://doi.org/10.1126/science.1208192ADSCrossRefGoogle Scholar
  13. 13.
    Fierro JM et al (1998) Phase-resolved studies of the high-energy gamma-ray emission from the Crab, Geminga, and Vela pulsars. Astrophys J 494(2):734–746.  https://doi.org/10.1086/305219ADSCrossRefGoogle Scholar
  14. 14.
    Aleksić J et al (2014) Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astron Astrophys 565:L12.  https://doi.org/10.1051/0004-6361/201423664ADSCrossRefGoogle Scholar
  15. 15.
    de Jager OC et al (1989) A powerful test for weak periodic signals with unknown light curve shape in sparse data. Astron Astrophys 221:180–190ADSGoogle Scholar
  16. 16.
    Albert J et al (2007) Unfolding of differential energy spectra in the MAGIC experiment. Nucl Instrum Methods Phys Res Sect A 583(2–3):494–506.  https://doi.org/10.1016/j.nima.2007.09.048ADSCrossRefGoogle Scholar
  17. 17.
    Rolke WA et al (2005) Limits and confidence intervals in the presence of nuisance parameters. Nucl Instrum Methods Phys Res Sect A 551(2–3):493–503.  https://doi.org/10.1016/j.nima.2005.05.068ADSCrossRefGoogle Scholar
  18. 18.
    Albert J et al (2008) VHE \(\gamma \)-ray observation of the crab nebula and its pulsar with the MAGIC telescope. Astrophys J 674(2):1037–1055.  https://doi.org/10.1086/525270ADSCrossRefGoogle Scholar
  19. 19.
    Aleksić J et al (2016) The major upgrade of the MAGIC telescopes, part II: A performance study using observations of the Crab Nebula. Astropart Phys 72:76–94.  https://doi.org/10.1016/j.astropartphys.2015.02.005ADSCrossRefGoogle Scholar
  20. 20.
    Eikenberry SS et al (1997) High time resolution infrared observations of the Crab Nebula pulsar and the pulsar emission mechanism. Astrophys J 477(1):465–474.  https://doi.org/10.1086/303701ADSCrossRefGoogle Scholar
  21. 21.
    Abdo AA et al (2010) Fermi large area telescope observations of the Crab Pulsar and Nebula. Astrophys J 708(2):1254–1267.  https://doi.org/10.1088/0004-637X/708/2/1254ADSCrossRefGoogle Scholar
  22. 22.
    Baring MG (2004) High-energy emission from pulsars: the polar cap scenario. Adv Space Res 33(4):552–560.  https://doi.org/10.1016/j.asr.2003.08.020ADSCrossRefGoogle Scholar
  23. 23.
    Baring MG, Harding AK (2001) Photon splitting and pair creation in highly magnetized pulsars. Astrophys J 547(2):929–948.  https://doi.org/10.1086/318390ADSCrossRefGoogle Scholar
  24. 24.
    Lee KJ et al (2010) Low bounds for pulsar \(\gamma \)-ray radiation altitudes. Mon Not R Astron Soc 405(3):2103.  https://doi.org/10.1111/j.1365-2966.2010.16600.xADSCrossRefGoogle Scholar
  25. 25.
    Muslimov AG, Harding AK (2003) Extended acceleration in slot gaps and pulsar high-energy emission. Astrophys J 588(1):430–440.  https://doi.org/10.1086/368162ADSCrossRefGoogle Scholar
  26. 26.
    Du YJ et al (2012) Radio-to-TeV phase-resolved emission from the crab pulsar: the annular gap model. Astrophys J 748(2):84.  https://doi.org/10.1088/0004-637X/748/2/84ADSCrossRefGoogle Scholar
  27. 27.
    Lyutikov M et al (2012) The very-high energy emission from pulsars: a case for inverse compton scattering. Astrophys J 754(1):33.  https://doi.org/10.1088/0004-637X/754/1/33ADSCrossRefGoogle Scholar
  28. 28.
    Vigano D et al (2015) An assessment of the pulsar outer gap model-II. Implications for the predicted -ray spectra. Mon Not R Astron Soc 447(3):2649–2657.  https://doi.org/10.1093/mnras/stu2565ADSCrossRefGoogle Scholar
  29. 29.
    Vigano D et al (2015) An assessment of the pulsar outer gap model - I. Assumptions, uncertainties, and implications on the gap size and the accelerating field. Mon Not R Astron Soc 447(3):2631–2648.  https://doi.org/10.1093/mnras/stu2564ADSCrossRefGoogle Scholar
  30. 30.
    Grenier IA, Harding AK (2015) Gamma-ray pulsars: a gold mine. C R Phys 16(6–7):641–660.  https://doi.org/10.1016/j.crhy.2015.08.013ADSCrossRefGoogle Scholar
  31. 31.
    Kalapotharakos C et al (2014) Gamma-ray emission in dissipative pulsar magnetospheres: from theory to fermi observations. Astrophys J 793(2):97.  https://doi.org/10.1088/0004-637X/793/2/97ADSCrossRefGoogle Scholar
  32. 32.
    Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40.  https://doi.org/10.1088/2041-8205/798/2/L40ADSCrossRefGoogle Scholar
  33. 33.
    Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the crab and other pulsars. Astrophys J 811(1):63.  https://doi.org/10.1088/0004-637X/811/1/63ADSCrossRefGoogle Scholar
  34. 34.
    Aharonian FA et al (2012) Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar.  https://doi.org/10.1038/nature10793ADSCrossRefGoogle Scholar
  35. 35.
    Osmanov Z, Rieger FM (2017) Pulsed VHE emission from the Crab Pulsar in the context of magnetocentrifugal particle acceleration. Mon Not R Astron Soc 464(2):1347–1352.  https://doi.org/10.1093/mnras/stw2408ADSCrossRefGoogle Scholar
  36. 36.
    Arons J (2012) Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci Rev 173(1–4):341–367.  https://doi.org/10.1007/s11214-012-9885-1ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsComplutense University of MadridMadridSpain

Personalised recommendations