Advertisement

MAGIC and the Crab Pulsar: History and Motivation

  • David Carreto FidalgoEmail author
Chapter
  • 137 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Since the commissioning of the first magic telescope in 2004 (see Sect.  3.3), the magic collaboration has always considered the Crab nebula and pulsar as valuable targets for observational campaigns and scientific research. To date approximately 14% of all the stored magic data were taken on the Crab (nebula and pulsar). However, a significant portion of this 14% was taken as technical data to evaluate the performance of the instrument as described in Sect.  3.4, and had no immediate scientific purpose. A short summary of the scientific observational campaigns on the Crab is given in Chap.  5.

References

  1. 1.
    Green DA, Stephenson FR (2003) The historical supernovae. arXiv, pp 1–12Google Scholar
  2. 2.
    Mayall NU, Oort JH (1942) Further data bearing on the identification of the Crab nebula with the supernova of 1054 A.D. Part II. The astronomical aspects. Publ Astron Soc Pac 54(600):95.  https://doi.org/10.1086/125410ADSCrossRefGoogle Scholar
  3. 3.
    Trimble V (1973) The distance to the Crab Nebula and NP 0532. Publ Astron Soc Pac 85(October):579.  https://doi.org/10.1086/129507ADSCrossRefGoogle Scholar
  4. 4.
    Bühler R, Blandford R (2014) The surprising Crab pulsar and its nebula: a review. Rep Progr Phys 77(6):066901.  https://doi.org/10.1088/0034-4885/77/6/066901ADSCrossRefGoogle Scholar
  5. 5.
    Abdo AA et al (2011) Gamma-ray flares from the Crab Nebula. Science 331(6018):739–742.  https://doi.org/10.1126/science.1199705ADSCrossRefGoogle Scholar
  6. 6.
    de Jager OC, Harding AK (1992) The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula. Astrophys J 396:161.  https://doi.org/10.1086/171706ADSCrossRefGoogle Scholar
  7. 7.
    Dean AJ et al (2008) Polarized gamma-ray emission from the Crab. Science 321(5893):1183–1185.  https://doi.org/10.1126/science.1149056ADSCrossRefGoogle Scholar
  8. 8.
    Albert J et al (2008b) VHE \(\gamma \)-ray observation of the Crab Nebula and its pulsar with the MAGIC telescope. Astrophys J 674(2):1037–1055.  https://doi.org/10.1086/525270ADSCrossRefGoogle Scholar
  9. 9.
    Wilson-Hodge CA et al (2011) When a standard candle flickers. Astrophys J 727(2):L40.  https://doi.org/10.1088/2041-8205/727/2/L40ADSCrossRefGoogle Scholar
  10. 10.
    Tavani M et al (2009) The AGILE mission. Astron Astrophys 502(3):995–1013.  https://doi.org/10.1051/0004-6361/200810527ADSCrossRefGoogle Scholar
  11. 11.
    Buehler R et al (2012) Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys J 749(1):26.  https://doi.org/10.1088/0004-637X/749/1/26ADSCrossRefGoogle Scholar
  12. 12.
    Staelin DH, Reifenstein EC (1968) Pulsating radio sources near the Crab Nebula. Science 162(3861):1481–1483.  https://doi.org/10.1126/science.162.3861.1481ADSCrossRefGoogle Scholar
  13. 13.
    Hewish A et al (1968) Observation of a rapidly pulsating radio source. Nature 217(5130):709–713.  https://doi.org/10.1038/217709a0ADSCrossRefGoogle Scholar
  14. 14.
    Kuzmin AD (2006) Giant pulses of pulsars radio emission. Chin J Astron Astrophys 6(May):34–40CrossRefGoogle Scholar
  15. 15.
    Strader MJ et al (2013) Excess optical enhancement observed with ARCONS for early Crab giant pulses. Astrophys J 779(1):L12.  https://doi.org/10.1088/2041-8205/779/1/L12ADSCrossRefGoogle Scholar
  16. 16.
    Abdo AA et al (2010a) Fermi large area telescope observations of the Crab Pulsar and Nebula. Astrophys J 708(2):1254–1267.  https://doi.org/10.1088/0004-637X/708/2/1254ADSCrossRefGoogle Scholar
  17. 17.
    Moffett DA, Hankins TH (1996) Multifrequency radio observations of the Crab pulsar. Astrophys J 468:779.  https://doi.org/10.1086/177734ADSCrossRefGoogle Scholar
  18. 18.
    Abdo AA et al (2013) The second fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 208(2):17.  https://doi.org/10.1088/0067-0049/208/2/17ADSCrossRefGoogle Scholar
  19. 19.
    Manchester RN et al (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006.  https://doi.org/10.1086/428488ADSCrossRefGoogle Scholar
  20. 20.
    Weisskopf MC et al (2011) Chandra phase-resolved X-ray spectroscopy of the Crab pulsar. Astron J 743(2):139.  https://doi.org/10.1088/0004-637X/743/2/139CrossRefGoogle Scholar
  21. 21.
    Aliu E et al (2008a) Observation of pulsed-rays above 25 GeV from the Crab pulsar with MAGIC. Science 322(5905):1221–1224.  https://doi.org/10.1126/science.1164718ADSCrossRefGoogle Scholar
  22. 22.
    Aliu E et al (2011) Detection of pulsed gamma rays above 100 GeV from the Crab pulsar. Science 334(6052):69–72.  https://doi.org/10.1126/science.1208192ADSCrossRefGoogle Scholar
  23. 23.
    Aleksić J et al (2012b) Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. Astron Astrophys 540:A69.  https://doi.org/10.1051/0004-6361/201118166CrossRefGoogle Scholar
  24. 24.
    Thompson DJ et al (1977) Final SAS-2 gamma-ray results on sources in the galactic anticenter region. Astrophys J 213:252.  https://doi.org/10.1086/155152ADSCrossRefGoogle Scholar
  25. 25.
    Clear J et al (1987) A detailed analysis of the high energy gamma-ray emission from the Crab pulsar and nebula. Astron Astrophys 174:85–94ADSGoogle Scholar
  26. 26.
    Kuiper L et al (2001) The Crab pulsar in the 0.75–30 MeV range as seen by CGRO COMPTEL. Astron Astrophys 378(3):918–935.  https://doi.org/10.1051/0004-6361:20011256ADSCrossRefGoogle Scholar
  27. 27.
    Lessard RW et al (2000) Search for pulsed TeV gamma-ray emission from the Crab pulsar. Astrophys J 531(2):942–948.  https://doi.org/10.1086/308495ADSCrossRefGoogle Scholar
  28. 28.
    de Naurois M et al (2002) Measurement of the Crab flux above 60 GeV with the CELESTE cerenkov telescope. Astrophys J 566(1):343–357.  https://doi.org/10.1086/337991ADSCrossRefGoogle Scholar
  29. 29.
    Aliu E et al (2008b) Observation of pulsed-rays above 25 GeV from the Crab pulsar with MAGIC - SOM. Science 322(5905):1221–1224.  https://doi.org/10.1126/science.1164718ADSCrossRefGoogle Scholar
  30. 30.
    Abdo AA et al (2010b) The first Fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 187(2):460–494.  https://doi.org/10.1088/0067-0049/187/2/460ADSCrossRefGoogle Scholar
  31. 31.
    Aleksić J et al (2014a) Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astron Astrophys 565:L12.  https://doi.org/10.1051/0004-6361/201423664ADSCrossRefGoogle Scholar
  32. 32.
    Aleksić J et al (2011) Observations of the Crab pulsar between 25 and 100 GeV with the MAGIC I Telescope. Astrophys J 742(1):43.  https://doi.org/10.1088/0004-637X/742/1/43ADSCrossRefGoogle Scholar
  33. 33.
    Bednarek W (2012) On the origin of sub-TeV gamma-ray pulsed emission from rotating neutron stars. Mon Not R Astron Soc 424(3):2079–2085.  https://doi.org/10.1111/j.1365-2966.2012.21354.xADSCrossRefGoogle Scholar
  34. 34.
    Saito T (2010) Study of the high energy gamma-ray emission from the Crab pulsar with the MAGIC telescope and Fermi-LAT. Ph.D. thesis, LMUGoogle Scholar
  35. 35.
    Fierro JM et al (1998) Phase-resolved studies of the high-energy gamma-ray emission from the Crab, Geminga, and Vela Pulsars. Astrophys J 494(2):734–746.  https://doi.org/10.1086/305219ADSCrossRefGoogle Scholar
  36. 36.
    Ansoldi S et al (2016) Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC. Astron Astrophys 585:A133.  https://doi.org/10.1051/0004-6361/201526853CrossRefGoogle Scholar
  37. 37.
    Aleksić J et al (2012a) Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart Phys 35(7):435–448.  https://doi.org/10.1016/j.astropartphys.2011.11.007ADSCrossRefGoogle Scholar
  38. 38.
    Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40.  https://doi.org/10.1088/2041-8205/798/2/L40ADSCrossRefGoogle Scholar
  39. 39.
    Aharonian FA et al (2012) Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar.  https://doi.org/10.1038/nature10793ADSCrossRefGoogle Scholar
  40. 40.
    Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the Crab and other pulsars. Astrophys J 811(1):63.  https://doi.org/10.1088/0004-637X/811/1/63ADSCrossRefGoogle Scholar
  41. 41.
    Mochol I, Pétri J (2015) Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds. Mon Not R Astron Soc Lett 449(1):L51–L55.  https://doi.org/10.1093/mnrasl/slv018ADSCrossRefGoogle Scholar
  42. 42.
    Lyutikov M et al (2012) The very-high energy emission from pulsars: a case for inverse compton scattering. Astrophys J 754(1):33.  https://doi.org/10.1088/0004-637X/754/1/33ADSCrossRefGoogle Scholar
  43. 43.
    Chkheidze N et al (2013) On the spectrum of the pulsed gamma-ray emission of the Crab pulsar from 10 MeV to 400 GeV. Astrophys J 773(2):143.  https://doi.org/10.1088/0004-637X/773/2/143ADSCrossRefGoogle Scholar
  44. 44.
    Arka I, Dubus G (2013) Pulsed high-energy \(\gamma \)-rays from thermal populations in the current sheets of pulsar winds. Astron Astrophys 550:A101.  https://doi.org/10.1051/0004-6361/201220110ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsComplutense University of MadridMadridSpain

Personalised recommendations