Skip to main content

MAGIC and the Crab Pulsar: History and Motivation

  • Chapter
  • First Online:
Revealing the Most Energetic Light from Pulsars and Their Nebulae

Part of the book series: Springer Theses ((Springer Theses))

  • 281 Accesses

Abstract

Since the commissioning of the first magic telescope in 2004 (see Sect. 3.3), the magic collaboration has always considered the Crab nebula and pulsar as valuable targets for observational campaigns and scientific research. To date approximately 14% of all the stored magic data were taken on the Crab (nebula and pulsar). However, a significant portion of this 14% was taken as technical data to evaluate the performance of the instrument as described in Sect. 3.4, and had no immediate scientific purpose. A short summary of the scientific observational campaigns on the Crab is given in Chap. 5.

In this configuration, we detected pulsed \(\gamma \) -rays from the Crab pulsar that were greater than 25 giga–electron volts, revealing a relatively high cutoff energy in the phase-averaged spectrum.

The magic Collaboration, 2008

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is the radius of the neutron star itself, which is around 10 km.

  2. 2.

    Except the very first paper when the sum trigger was still not available [8].

References

  1. Green DA, Stephenson FR (2003) The historical supernovae. arXiv, pp 1–12

    Google Scholar 

  2. Mayall NU, Oort JH (1942) Further data bearing on the identification of the Crab nebula with the supernova of 1054 A.D. Part II. The astronomical aspects. Publ Astron Soc Pac 54(600):95. https://doi.org/10.1086/125410

    Article  ADS  Google Scholar 

  3. Trimble V (1973) The distance to the Crab Nebula and NP 0532. Publ Astron Soc Pac 85(October):579. https://doi.org/10.1086/129507

    Article  ADS  Google Scholar 

  4. Bühler R, Blandford R (2014) The surprising Crab pulsar and its nebula: a review. Rep Progr Phys 77(6):066901. https://doi.org/10.1088/0034-4885/77/6/066901

    Article  ADS  Google Scholar 

  5. Abdo AA et al (2011) Gamma-ray flares from the Crab Nebula. Science 331(6018):739–742. https://doi.org/10.1126/science.1199705

    Article  ADS  Google Scholar 

  6. de Jager OC, Harding AK (1992) The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula. Astrophys J 396:161. https://doi.org/10.1086/171706

    Article  ADS  Google Scholar 

  7. Dean AJ et al (2008) Polarized gamma-ray emission from the Crab. Science 321(5893):1183–1185. https://doi.org/10.1126/science.1149056

    Article  ADS  Google Scholar 

  8. Albert J et al (2008b) VHE \(\gamma \)-ray observation of the Crab Nebula and its pulsar with the MAGIC telescope. Astrophys J 674(2):1037–1055. https://doi.org/10.1086/525270

    Article  ADS  Google Scholar 

  9. Wilson-Hodge CA et al (2011) When a standard candle flickers. Astrophys J 727(2):L40. https://doi.org/10.1088/2041-8205/727/2/L40

    Article  ADS  Google Scholar 

  10. Tavani M et al (2009) The AGILE mission. Astron Astrophys 502(3):995–1013. https://doi.org/10.1051/0004-6361/200810527

    Article  ADS  Google Scholar 

  11. Buehler R et al (2012) Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys J 749(1):26. https://doi.org/10.1088/0004-637X/749/1/26

    Article  ADS  Google Scholar 

  12. Staelin DH, Reifenstein EC (1968) Pulsating radio sources near the Crab Nebula. Science 162(3861):1481–1483. https://doi.org/10.1126/science.162.3861.1481

    Article  ADS  Google Scholar 

  13. Hewish A et al (1968) Observation of a rapidly pulsating radio source. Nature 217(5130):709–713. https://doi.org/10.1038/217709a0

    Article  ADS  Google Scholar 

  14. Kuzmin AD (2006) Giant pulses of pulsars radio emission. Chin J Astron Astrophys 6(May):34–40

    Article  Google Scholar 

  15. Strader MJ et al (2013) Excess optical enhancement observed with ARCONS for early Crab giant pulses. Astrophys J 779(1):L12. https://doi.org/10.1088/2041-8205/779/1/L12

    Article  ADS  Google Scholar 

  16. Abdo AA et al (2010a) Fermi large area telescope observations of the Crab Pulsar and Nebula. Astrophys J 708(2):1254–1267. https://doi.org/10.1088/0004-637X/708/2/1254

    Article  ADS  Google Scholar 

  17. Moffett DA, Hankins TH (1996) Multifrequency radio observations of the Crab pulsar. Astrophys J 468:779. https://doi.org/10.1086/177734

    Article  ADS  Google Scholar 

  18. Abdo AA et al (2013) The second fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 208(2):17. https://doi.org/10.1088/0067-0049/208/2/17

    Article  ADS  Google Scholar 

  19. Manchester RN et al (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006. https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  20. Weisskopf MC et al (2011) Chandra phase-resolved X-ray spectroscopy of the Crab pulsar. Astron J 743(2):139. https://doi.org/10.1088/0004-637X/743/2/139

    Article  Google Scholar 

  21. Aliu E et al (2008a) Observation of pulsed-rays above 25 GeV from the Crab pulsar with MAGIC. Science 322(5905):1221–1224. https://doi.org/10.1126/science.1164718

    Article  ADS  Google Scholar 

  22. Aliu E et al (2011) Detection of pulsed gamma rays above 100 GeV from the Crab pulsar. Science 334(6052):69–72. https://doi.org/10.1126/science.1208192

    Article  ADS  Google Scholar 

  23. Aleksić J et al (2012b) Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. Astron Astrophys 540:A69. https://doi.org/10.1051/0004-6361/201118166

    Article  Google Scholar 

  24. Thompson DJ et al (1977) Final SAS-2 gamma-ray results on sources in the galactic anticenter region. Astrophys J 213:252. https://doi.org/10.1086/155152

    Article  ADS  Google Scholar 

  25. Clear J et al (1987) A detailed analysis of the high energy gamma-ray emission from the Crab pulsar and nebula. Astron Astrophys 174:85–94

    ADS  Google Scholar 

  26. Kuiper L et al (2001) The Crab pulsar in the 0.75–30 MeV range as seen by CGRO COMPTEL. Astron Astrophys 378(3):918–935. https://doi.org/10.1051/0004-6361:20011256

    Article  ADS  Google Scholar 

  27. Lessard RW et al (2000) Search for pulsed TeV gamma-ray emission from the Crab pulsar. Astrophys J 531(2):942–948. https://doi.org/10.1086/308495

    Article  ADS  Google Scholar 

  28. de Naurois M et al (2002) Measurement of the Crab flux above 60 GeV with the CELESTE cerenkov telescope. Astrophys J 566(1):343–357. https://doi.org/10.1086/337991

    Article  ADS  Google Scholar 

  29. Aliu E et al (2008b) Observation of pulsed-rays above 25 GeV from the Crab pulsar with MAGIC - SOM. Science 322(5905):1221–1224. https://doi.org/10.1126/science.1164718

    Article  ADS  Google Scholar 

  30. Abdo AA et al (2010b) The first Fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 187(2):460–494. https://doi.org/10.1088/0067-0049/187/2/460

    Article  ADS  Google Scholar 

  31. Aleksić J et al (2014a) Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astron Astrophys 565:L12. https://doi.org/10.1051/0004-6361/201423664

    Article  ADS  Google Scholar 

  32. Aleksić J et al (2011) Observations of the Crab pulsar between 25 and 100 GeV with the MAGIC I Telescope. Astrophys J 742(1):43. https://doi.org/10.1088/0004-637X/742/1/43

    Article  ADS  Google Scholar 

  33. Bednarek W (2012) On the origin of sub-TeV gamma-ray pulsed emission from rotating neutron stars. Mon Not R Astron Soc 424(3):2079–2085. https://doi.org/10.1111/j.1365-2966.2012.21354.x

    Article  ADS  Google Scholar 

  34. Saito T (2010) Study of the high energy gamma-ray emission from the Crab pulsar with the MAGIC telescope and Fermi-LAT. Ph.D. thesis, LMU

    Google Scholar 

  35. Fierro JM et al (1998) Phase-resolved studies of the high-energy gamma-ray emission from the Crab, Geminga, and Vela Pulsars. Astrophys J 494(2):734–746. https://doi.org/10.1086/305219

    Article  ADS  Google Scholar 

  36. Ansoldi S et al (2016) Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC. Astron Astrophys 585:A133. https://doi.org/10.1051/0004-6361/201526853

    Article  Google Scholar 

  37. Aleksić J et al (2012a) Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart Phys 35(7):435–448. https://doi.org/10.1016/j.astropartphys.2011.11.007

    Article  ADS  Google Scholar 

  38. Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40. https://doi.org/10.1088/2041-8205/798/2/L40

    Article  ADS  Google Scholar 

  39. Aharonian FA et al (2012) Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar. https://doi.org/10.1038/nature10793

    Article  ADS  Google Scholar 

  40. Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the Crab and other pulsars. Astrophys J 811(1):63. https://doi.org/10.1088/0004-637X/811/1/63

    Article  ADS  Google Scholar 

  41. Mochol I, Pétri J (2015) Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds. Mon Not R Astron Soc Lett 449(1):L51–L55. https://doi.org/10.1093/mnrasl/slv018

    Article  ADS  Google Scholar 

  42. Lyutikov M et al (2012) The very-high energy emission from pulsars: a case for inverse compton scattering. Astrophys J 754(1):33. https://doi.org/10.1088/0004-637X/754/1/33

    Article  ADS  Google Scholar 

  43. Chkheidze N et al (2013) On the spectrum of the pulsed gamma-ray emission of the Crab pulsar from 10 MeV to 400 GeV. Astrophys J 773(2):143. https://doi.org/10.1088/0004-637X/773/2/143

    Article  ADS  Google Scholar 

  44. Arka I, Dubus G (2013) Pulsed high-energy \(\gamma \)-rays from thermal populations in the current sheets of pulsar winds. Astron Astrophys 550:A101. https://doi.org/10.1051/0004-6361/201220110

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carreto Fidalgo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carreto Fidalgo, D. (2019). MAGIC and the Crab Pulsar: History and Motivation. In: Revealing the Most Energetic Light from Pulsars and Their Nebulae. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24194-0_4

Download citation

Publish with us

Policies and ethics