Advertisement

Cherenkov Telescopes and MAGIC

  • David Carreto FidalgoEmail author
Chapter
  • 143 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The first source of very-high-energy (vhe) gamma rays, the Crab nebula, was firmly detected by the Whipple collaboration in the 1980s [1]. Their pioneering instrument and analysis method became the basic concept in the field of Imaging Atmospheric Cherenkov Telescopes (iacts)  and paved the way for todays third generation telescopes.

References

  1. 1.
    Weekes TC et al (1989) Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys J 342:379.  https://doi.org/10.1086/167599ADSCrossRefGoogle Scholar
  2. 2.
    Wakely SP, Horan D (2007) TeVCat: an online catalog for very high energy gamma-ray astronomy. In: 30th international cosmic ray conference, Merida, MexicoGoogle Scholar
  3. 3.
    Groom DE, Klein SR (2000) Passage of particles through matter. Eur Phys J C 15(1–4):163–173.  https://doi.org/10.1007/BF02683419ADSCrossRefGoogle Scholar
  4. 4.
    de Naurois M, Mazin D (2015) Ground-based detectors in very-high-energy gamma-ray astronomy. CR Phys 16(6–7):610–627.  https://doi.org/10.1016/j.crhy.2015.08.011ADSCrossRefGoogle Scholar
  5. 5.
    Atwood WB et al (2009) The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys J 697(2):1071–1102.  https://doi.org/10.1088/0004-637X/697/2/1071ADSCrossRefGoogle Scholar
  6. 6.
    Cherenkov PA (1934) Visible emission of clean liquids by action of gamma radiation. Doklady Akad Nauk SSSR 2(451)Google Scholar
  7. 7.
    Tamm IE, Frank IM (1937) Coherent radiation of fast electrons in a medium. Dokl Akad Nauk SSSR 14(107)Google Scholar
  8. 8.
    Mazin D (2007) A study of very high energy gamma-ray emission from AGNs and contraints on the extragalactic background light. Ph.D. thesisGoogle Scholar
  9. 9.
    Barrio JA et al (1998) The MAGIC telescope: design study for the construction of a 17 m Cerenkov telescope for Gamma-Astronomy above 10 GeV. Technical report, MPIGoogle Scholar
  10. 10.
    Wagner RM (2006) Measurement of very high energy gamma-ray emission from four blazars using the MAGIC telescope and a comparative blazar study. Ph.D. thesis, TUMGoogle Scholar
  11. 11.
    Jelley J, Galbraith W (1953) LXV. Light pulses from the night sky. Lond Edinb Dublin Philos Mag J Sci 44(353):619–622.  https://doi.org/10.1080/14786440608521039CrossRefGoogle Scholar
  12. 12.
    Anderhub H et al (2013) Design and operation of FACT—the first G-APD Cherenkov telescope. J Instrum 8(06):P06008–P06008.  https://doi.org/10.1088/1748-0221/8/06/P06008CrossRefGoogle Scholar
  13. 13.
    Blackett PMS (1948) A possible contribution to the night sky from the Cerenkov radiation emitted by cosmic rays. The Emission Spectra of the Night Sky and Aurorae, Papers read at an International Conference held in London, July, 1947. London: The Physical Society, p 34Google Scholar
  14. 14.
    Fruck C (2015) The Galactic Center resolved with MAGIC and a new technique for Atmospheric Calibration. Ph.D. thesisGoogle Scholar
  15. 15.
    Hillas AM (1985) Cherenkov light images of EAS produced by primary gamma rays and by nuclei. In: 19th international cosmic ray conference, La Jolla, USA, p 445Google Scholar
  16. 16.
    Kohnle A et al (1996) Stereoscopic imaging of air showers with the first two HEGRA Cherenkov telescopes. Astropart Phys 5(2):119–131.  https://doi.org/10.1016/0927-6505(96)00011-4ADSCrossRefGoogle Scholar
  17. 17.
    Aleksić J et al (2010) Search for an extended VHE \(\gamma \)-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope. Astron Astrophys 524:A77.  https://doi.org/10.1051/0004-6361/201014747CrossRefGoogle Scholar
  18. 18.
    Weekes TC (2005) The atmospheric Cherenkov imaging technique for very high energy gamma-ray astronomyGoogle Scholar
  19. 19.
    Lorenz E, Wagner R (2012) Very-high energy gamma-ray astronomy. Eur Phys J H 37(3):459–513.  https://doi.org/10.1140/epjh/e2012-30016-xCrossRefGoogle Scholar
  20. 20.
    Doro M et al (2008) The reflective surface of the MAGIC telescope. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 595(1):200–203.  https://doi.org/10.1016/j.nima.2008.07.073ADSCrossRefGoogle Scholar
  21. 21.
    Zanin R (2011) Observation of the Crab pulsar wind nebula and microquasar candidates with MAGIC. Ph.D. thesis, UABGoogle Scholar
  22. 22.
    Goebel F et al (2005) Absolute energy scale calibration of the MAGIC telescope using muon images. In: 29th international cosmic ray conference, Pune, IndiaGoogle Scholar
  23. 23.
    Aleksić J et al (2015) The major upgrade of the MAGIC telescopes, part I: the hardware improvements and the commissioning of the system. Astropart Phys 72:1–15.  https://doi.org/10.1016/j.astropartphys.2015.04.004MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sitarek J et al (2013) Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 723:109–120.  https://doi.org/10.1016/j.nima.2013.05.014ADSCrossRefGoogle Scholar
  25. 25.
    Giavitto G (2013) Observing the VHE Gamma-Ray Sky with MAGIC Telescopes: the Blazar B3 2247+381 and the Crab Pulsar. Ph.D. thesisGoogle Scholar
  26. 26.
    Albert J et al (2008) VHE \(\gamma \)-Ray observation of the Crab Nebula and its Pulsar with the MAGIC Telescope. Astrophys J 674(2):1037–1055.  https://doi.org/10.1086/525270ADSCrossRefGoogle Scholar
  27. 27.
    Stiehler R (2001) Konzeption, Entwicklung und Aufbau einer FADC-basierten Ausleseelektronik für das MAGIC-Teleskop. Ph.D. thesis, University of SiegenGoogle Scholar
  28. 28.
    Goebel F et al (2007) Upgrade of the MAGIC Telescope with a Multiplexed Fiber-Optic 2 GSamples/s FADC Data Acquisition system. In: 30th international cosmic ray conference, Merida, MexicoGoogle Scholar
  29. 29.
    Aliu E et al (2009) Improving the performance of the single-dish Cherenkov telescope MAGIC through the use of signal timing. Astropart Phys 30(6):293–305.  https://doi.org/10.1016/j.astropartphys.2008.10.003ADSCrossRefGoogle Scholar
  30. 30.
    Aleksić J et al (2012) Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart Phys 35(7):435–448.  https://doi.org/10.1016/j.astropartphys.2011.11.007ADSCrossRefGoogle Scholar
  31. 31.
    Aleksić J et al (2016) The major upgrade of the MAGIC telescopes, part II: a performance study using observations of the Crab Nebula. Astropart Phys 72:76–94.  https://doi.org/10.1016/j.astropartphys.2015.02.005ADSCrossRefGoogle Scholar
  32. 32.
    Zanin R et al (2013) MARS, the MAGIC analysis and reconstruction software. In: 33rd international cosmic ray conference, Rio de Janeiro, Brazil, p 773Google Scholar
  33. 33.
    Brun R, Rademakers F (1997) ROOT—an object oriented data analysis framework. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 389(1–2):81–86.  https://doi.org/10.1016/S0168-9002(97)00048-XADSCrossRefGoogle Scholar
  34. 34.
    Heck D et al (1998) CORSIKA: a Monte Carlo code to simulate extensive air showersGoogle Scholar
  35. 35.
    Majumdar P et al (2005) Monte Carlo simulation for the MAGIC telescope. In: 29th international cosmic ray conference, Pune, India, pp 203–206Google Scholar
  36. 36.
    López M (2013) Simulations of the MAGIC telescopes with matelsim. In: 33rd international cosmic ray conference, Rio de Janeiro, Brazil, p 692Google Scholar
  37. 37.
    Fomin V et al (1994) New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method. Astropart Phys 2(2):137–150.  https://doi.org/10.1016/0927-6505(94)90036-1ADSCrossRefGoogle Scholar
  38. 38.
    Saito T (2010) Study of the High Energy Gamma-ray Emission from the Crab Pulsar with the MAGIC telescope and Fermi-LAT. Ph.D. thesis, LMUGoogle Scholar
  39. 39.
    Mirzoyan R, Lorenz E (1997) On the calibration accuracy of light sensors in atmospheric Cherenkov fluorescence and neutrino experiments. In: 25th international cosmic ray conference, Durban, South Africa, vol 7, p 265Google Scholar
  40. 40.
    Gaug M (2006) Calibration of the MAGIC telescope and observation of gamma ray bursts. Ph.D. thesisGoogle Scholar
  41. 41.
    Rissi MT (2009) Detection of pulsed very high energy gamma-rays from the Crab Pulsar with the MAGIC telescope using an analog sum trigger. Ph.D. thesisGoogle Scholar
  42. 42.
    Lombardi S et al (2011) Advanced stereoscopic gamma-ray shower analysis with the MAGIC telescopes. In: 32nd international cosmic ray conference, Beijing, ChinaGoogle Scholar
  43. 43.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32.  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  44. 44.
    Bock R et al (2004) Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 516(2–3):511–528.  https://doi.org/10.1016/j.nima.2003.08.157ADSCrossRefGoogle Scholar
  45. 45.
    Sitarek J (2010) Gamma-rays from cascades in active galactic nuclei: observations with the MAGIC telescope and theoretical interpretation. Ph.D. thesis, University of LodzGoogle Scholar
  46. 46.
    Li TP, Ma YQ (1983) Analysis methods for results in gamma-ray astronomy. Astrophys J 272:317–324ADSCrossRefGoogle Scholar
  47. 47.
    Albert J et al (2007) Unfolding of differential energy spectra in the MAGIC experiment. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 583(2–3):494–506.  https://doi.org/10.1016/j.nima.2007.09.048ADSCrossRefGoogle Scholar
  48. 48.
    Holler M et al (2017) First measurement of the extension of the Crab nebula at TeV energies. In: 35th international cosmic ray conference, Busan, South KoreaGoogle Scholar
  49. 49.
    Hassan Collado T (2015) Sensitivity studies for the Cherenkov Telescope Array. Ph.D. thesis, UCMGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsComplutense University of MadridMadridSpain

Personalised recommendations