Advertisement

Pulsars and Pulsar Wind Nebulae

  • David Carreto FidalgoEmail author
Chapter
  • 141 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

When heavy stars have burned all their nuclear fuel, neutron degeneracy pressure is the last force able to halt their collapse into a black hole. The sudden stop of the free-fall collapse leads to a rebound of the infalling matter triggering an outward shock that blows up the star envelope and powers a Type II supernova. If the mass of the progenitor star does not exceed \(\sim \)20 solar masses [1], the compact remnant core evolves into a neutron star. Otherwise the amount of matter falling back on to the core crosses the maximum neutron star mass and ultimately collapses to form a black hole.

References

  1. 1.
    Fryer CL, New KCB (2011) Gravitational waves from gravitational collapse. Living Rev Relativ 14(1):1.  https://doi.org/10.12942/lrr-2011-1ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Lattimer JM, Prakash M (2004) The physics of neutron stars. Science 304(5670):536–542.  https://doi.org/10.1126/science.1090720ADSCrossRefGoogle Scholar
  3. 3.
    Abdo AA et al (2013) The second fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 208(2):17.  https://doi.org/10.1088/0067-0049/208/2/17ADSCrossRefGoogle Scholar
  4. 4.
    Abdalla H et al (2018) The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey. Astron Astrophys 612:A2.  https://doi.org/10.1051/0004-6361/201629377CrossRefGoogle Scholar
  5. 5.
    Chadwick J (1932) Possible existence of a neutron. Nature 129(3252):312–312.  https://doi.org/10.1038/129312a0ADSCrossRefGoogle Scholar
  6. 6.
    Baade W, Zwicky F (1934) Remarks on super-novae and cosmic rays. Phys Rev 46(1):76–77.  https://doi.org/10.1103/PhysRev.46.76.2ADSCrossRefGoogle Scholar
  7. 7.
    Hewish A et al (1968) Observation of a rapidly pulsating radio source. Nature 217(5130):709–713.  https://doi.org/10.1038/217709a0ADSCrossRefGoogle Scholar
  8. 8.
    Page D, Reddy S (2006) Dense matter in compact stars: theoretical developments and observational constraints. Annu Rev Nucl Part Sci 56(1):327–374.  https://doi.org/10.1146/annurev.nucl.56.080805.140600ADSCrossRefGoogle Scholar
  9. 9.
    Harding AK (2013) The neutron star zoo. Front Phys 8(6):679–692.  https://doi.org/10.1007/s11467-013-0285-0CrossRefGoogle Scholar
  10. 10.
    Archibald AM et al (2009) A radio pulsar/X-ray binary link. Science 324(5933):1411–1414.  https://doi.org/10.1126/science.1172740ADSCrossRefGoogle Scholar
  11. 11.
    Papitto A et al (2013) Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501(7468):517–520.  https://doi.org/10.1038/nature12470ADSCrossRefGoogle Scholar
  12. 12.
    Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys J 157:869.  https://doi.org/10.1086/150119ADSCrossRefGoogle Scholar
  13. 13.
    Timokhin AN (2006) On the force-free magnetosphere of an aligned rotator. Mon Not R Astron Soc 368(3):1055–1072.  https://doi.org/10.1111/j.1365-2966.2006.10192.xADSCrossRefGoogle Scholar
  14. 14.
    Michel FC (1973) Rotating magnetospheres: an exact 3-D solution. Astrophys J 180:L133.  https://doi.org/10.1086/181169ADSCrossRefGoogle Scholar
  15. 15.
    Scharlemann ET, Wagoner RV (1973) Aligned rotating magnetospheres. General analysis. Astrophys J 182:951.  https://doi.org/10.1086/152195ADSCrossRefGoogle Scholar
  16. 16.
    Contopoulos I et al (1999) The axisymmetric pulsar magnetosphere. Astrophys J 511(1):351–358.  https://doi.org/10.1086/306652ADSCrossRefGoogle Scholar
  17. 17.
    Spitkovsky A (2006) Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys J 648(1):L51–L54.  https://doi.org/10.1086/507518ADSCrossRefGoogle Scholar
  18. 18.
    Gruzinov A (2007) Pulsar emission and force-free electrodynamics. Astrophys J 667(1):L69–L71.  https://doi.org/10.1086/519839ADSCrossRefGoogle Scholar
  19. 19.
    Li J et al (2012) Resisitive solutions for pulsar magnetospheres. Astrophys J 746(1):60.  https://doi.org/10.1088/0004-637X/746/1/60ADSCrossRefGoogle Scholar
  20. 20.
    Kalapotharakos C et al (2012) Toward a realistic pulsar magnetosphere. Astrophys J 749(1):2.  https://doi.org/10.1088/0004-637X/749/1/2ADSCrossRefGoogle Scholar
  21. 21.
    Kalapotharakos C et al (2014) Gamma-ray emission in dissipative pulsar magnetospheres: from theory to fermi observations. Astrophys J 793(2):97.  https://doi.org/10.1088/0004-637X/793/2/97ADSCrossRefGoogle Scholar
  22. 22.
    Brambilla G et al (2015) Testing dissipative magnetosphere model light curves and spectra with Fermi pulsars. Astrophys J 804(2):84.  https://doi.org/10.1088/0004-637X/804/2/84ADSCrossRefGoogle Scholar
  23. 23.
    Philippov AA et al (2015) Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys J 801(1):L19.  https://doi.org/10.1088/2041-8205/801/1/L19ADSCrossRefGoogle Scholar
  24. 24.
    Manchester RN et al (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006.  https://doi.org/10.1086/428488ADSCrossRefGoogle Scholar
  25. 25.
    Michel F, Li H (1999) Electrodynamics of neutron stars. Phys Rep 318(6):227–297.  https://doi.org/10.1016/S0370-1573(99)00002-2ADSCrossRefGoogle Scholar
  26. 26.
    Shapiro SL, Teukolsky SA (1983) Black holes. The physics of compact objects. Wiley-VCH, White Dwarfs and Neutron Stars. ISBN 0471873160Google Scholar
  27. 27.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley. ISBN 047130932XGoogle Scholar
  28. 28.
    Gunn JE, Ostriker JP (1969) Magnetic dipole radiation from pulsars. Nature 221:454.  https://doi.org/10.1038/221454a0ADSCrossRefGoogle Scholar
  29. 29.
    Tong H, Kou FF (2017) Possible evolution of the pulsar braking index from larger than three to about one. Astrophys J 837(2):117.  https://doi.org/10.3847/1538-4357/aa60c6ADSCrossRefGoogle Scholar
  30. 30.
    de Araujo JC et al (2016) Gravitational wave emission by the high braking index pulsar PSR J1640–4631. J Cosmol Astropart Phys 2016(07):023.  https://doi.org/10.1088/1475-7516/2016/07/023CrossRefGoogle Scholar
  31. 31.
    Mignani RP (2011) Optical, ultraviolet, and infrared observations of isolated neutron stars. Adv Space Res 47(8):1281–1293.  https://doi.org/10.1016/j.asr.2009.12.011ADSCrossRefGoogle Scholar
  32. 32.
    Mignani RP et al (2016) Observations of three young \(\gamma \)-ray pulsars with the Gran Telescopio Canarias. Mon Not R Astron Soc 461(4):4317–4328.  https://doi.org/10.1093/mnras/stw1629ADSCrossRefGoogle Scholar
  33. 33.
    Becker W (2009) Neutron stars and pulsars, vol 357 of Astrophysics and space science library. Springer, Berlin.  https://doi.org/10.1007/978-3-540-76965-1. ISBN 978-3-540-76964-4Google Scholar
  34. 34.
    Ackermann M et al (2012) The Fermi large area telescope on orbit: event classification, instrument response functions, and calibration. Astrophys J Suppl Ser 203(1):4.  https://doi.org/10.1088/0067-0049/203/1/4ADSCrossRefGoogle Scholar
  35. 35.
    Thompson DJ (2004) Gamma ray pulsars. In: Cheng KS, Romero GE (eds) Cosmic gamma-ray sources. Kluwer Academic, Dordrecht, pp 149–168.  https://doi.org/10.1007/978-1-4020-2256-2_7CrossRefGoogle Scholar
  36. 36.
    Thompson DJ (2008) Gamma ray astrophysics: the EGRET results. Rep Prog Phys 71(11):116901.  https://doi.org/10.1088/0034-4885/71/11/116901ADSCrossRefGoogle Scholar
  37. 37.
    Baring MG (2004) High-energy emission from pulsars: the polar cap scenario. Adv Space Res 33(4):552–560.  https://doi.org/10.1016/j.asr.2003.08.020ADSCrossRefGoogle Scholar
  38. 38.
    Lee KJ et al (2010) Low bounds for pulsar \(\gamma \)-ray radiation altitudes. Mon Not R Astron Soc 405(3):2103–2112.  https://doi.org/10.1111/j.1365-2966.2010.16600.xADSCrossRefGoogle Scholar
  39. 39.
    Watters KP, Romani RW (2011) The galactic population of young \(\gamma \)-ray pulsars. Astrophys J 727(2):123.  https://doi.org/10.1088/0004-637X/727/2/123ADSCrossRefGoogle Scholar
  40. 40.
    Watters KP et al (2009) An atlas for interpreting \(\gamma \)-ray pulsar light curves. Astrophys J 695(2):1289–1301.  https://doi.org/10.1088/0004-637X/695/2/1289ADSCrossRefGoogle Scholar
  41. 41.
    Grenier IA, Harding AK (2006) Pulsar twinkling and relativity. In: AIP conference proceedings, p 9Google Scholar
  42. 42.
    Viganò D et al (2015) A systematic synchro-curvature modelling of pulsar \(\gamma \)-ray spectra unveils hidden trends. Mon Not R Astron Soc 453(3):2600–2622.  https://doi.org/10.1093/mnras/stv1582ADSCrossRefGoogle Scholar
  43. 43.
    Bochenek C, McCann A (2015) On the spectral shape of gamma-ray pulsars above the break energy. In: 34th international cosmic ray conference. The Hague, NetherlandsGoogle Scholar
  44. 44.
    Ahnen ML et al (2016) Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes. Astron Astrophys 591:A138.  https://doi.org/10.1051/0004-6361/201527722CrossRefGoogle Scholar
  45. 45.
    Abdo AA et al (2010c) The Vela pulsar: results from the first year of Fermi LAT observations. Astrophys J 713(1):154–165.  https://doi.org/10.1088/0004-637X/713/1/154ADSCrossRefGoogle Scholar
  46. 46.
    Takata J et al (2016) Probing gamma-ray emissions of Fermi -LAT pulsars with a non-stationary outer gap model. Mon Not R Astron Soc 455(4):4249–4266.  https://doi.org/10.1093/mnras/stv2612ADSCrossRefGoogle Scholar
  47. 47.
    Kuiper L et al (2000) The likely detection of pulsed high-energy \(\gamma \)-ray emission from millisecond pulsar PSR J0218+4232. Astron Astrophys 359:615–626ADSGoogle Scholar
  48. 48.
    Harding AK et al (2002) Regimes of pulsar pair formation and particle energetics. Astrophys J 576(1):366–375.  https://doi.org/10.1086/341633ADSCrossRefGoogle Scholar
  49. 49.
    Harding AK et al (2005) High energy emission from millisecond pulsars. Astrophys J 622(1):531–543.  https://doi.org/10.1086/427840ADSCrossRefGoogle Scholar
  50. 50.
    Johnson TJ et al (2014) Constraints on the emission geometries and spin evolution of gamma-ray millisecond pulsars. Astrophys J Suppl Ser 213(1):6.  https://doi.org/10.1088/0067-0049/213/1/6ADSCrossRefGoogle Scholar
  51. 51.
    Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the Crab and other pulsars. Astrophys J 811(1):63.  https://doi.org/10.1088/0004-637X/811/1/63ADSCrossRefGoogle Scholar
  52. 52.
    Pétri J (2016) Theory of pulsar magnetosphere and wind. J Plasma Phys 82(05):635820502.  https://doi.org/10.1017/S0022377816000763CrossRefGoogle Scholar
  53. 53.
    Sturrock PA (1971) A model of pulsars. Astrophys J 164:529.  https://doi.org/10.1086/150865ADSCrossRefGoogle Scholar
  54. 54.
    Ruderman MA, Sutherland PG (1975) Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys J 196:51.  https://doi.org/10.1086/153393ADSCrossRefGoogle Scholar
  55. 55.
    Daugherty JK, Harding AK (1996) Gamma-ray pulsars: emission from extended polar CAP cascades. Astrophys J 458:278ADSCrossRefGoogle Scholar
  56. 56.
    Arons J (1983) Pair creation above pulsar polar caps—geometrical structure and energetics of slot gaps. Astrophys J 266:215.  https://doi.org/10.1086/160771ADSCrossRefGoogle Scholar
  57. 57.
    Dyks J, Rudak B (2003) Two pole caustic model for high energy light curves of pulsars. Astrophys J 598(2):1201–1206.  https://doi.org/10.1086/379052ADSCrossRefGoogle Scholar
  58. 58.
    Cheng KS et al (1986) Energetic radiation from rapidly spinning pulsars. I-Outer magnetosphere gaps. II–VELA and Crab. Astrophys J 300:500.  https://doi.org/10.1086/163829ADSCrossRefGoogle Scholar
  59. 59.
    Romani RW (1996) Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys J 470:469.  https://doi.org/10.1086/177878ADSCrossRefGoogle Scholar
  60. 60.
    Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40.  https://doi.org/10.1088/2041-8205/798/2/L40ADSCrossRefGoogle Scholar
  61. 61.
    Vigano D et al (2015a) An assessment of the pulsar outer gap model—I. Assumptions, uncertainties, and implications on the gap size and the accelerating field. Mon Not R Astron Soc 447(3):2631–2648.  https://doi.org/10.1093/mnras/stu2564ADSCrossRefGoogle Scholar
  62. 62.
    Pétri J (2012) High-energy emission from the pulsar striped wind: a synchrotron model for gamma-ray pulsars. Mon Not R Astron Soc 424(3):2023–2027.  https://doi.org/10.1111/j.1365-2966.2012.21350.xADSCrossRefGoogle Scholar
  63. 63.
    Arka I, Dubus G (2013) Pulsed high-energy \(\gamma \)-rays from thermal populations in the current sheets of pulsar winds. Astron Astrophys 550:A101.  https://doi.org/10.1051/0004-6361/201220110ADSCrossRefGoogle Scholar
  64. 64.
    Pierbattista M et al (2012) Constraining \(\gamma \)-ray pulsar gap models with a simulated pulsar population. Astron Astrophys 545:A42.  https://doi.org/10.1051/0004-6361/201219135CrossRefGoogle Scholar
  65. 65.
    Arons J (2012) Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci Rev 173(1–4):341–367.  https://doi.org/10.1007/s11214-012-9885-1ADSCrossRefGoogle Scholar
  66. 66.
    Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Annu Rev Astron Astrophys 44(1):17–47.  https://doi.org/10.1146/annurev.astro.44.051905.092528ADSCrossRefGoogle Scholar
  67. 67.
    Aharonian F, Bogovalov S (2003) Exploring physics of rotation powered pulsars with sub-10 GeV imaging atmospheric Cherenkov telescopes. New Astron 8(2):85–103.  https://doi.org/10.1016/S1384-1076(02)00200-2ADSCrossRefGoogle Scholar
  68. 68.
    Porth O et al (2017) Modelling jets, tori and flares in pulsar wind nebulae. Space Sci Rev 207(1–4):137–174.  https://doi.org/10.1007/s11214-017-0344-xADSCrossRefGoogle Scholar
  69. 69.
    Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154(1):1–75.  https://doi.org/10.1016/0370-1573(87)90134-7ADSCrossRefGoogle Scholar
  70. 70.
    Spitkovsky A (2008) Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys J 682(1):L5–L8.  https://doi.org/10.1086/590248ADSCrossRefGoogle Scholar
  71. 71.
    Sironi L, Spitkovsky A (2011) Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys J 741(1):39.  https://doi.org/10.1088/0004-637X/741/1/39ADSCrossRefGoogle Scholar
  72. 72.
    Kennel CF, Coroniti FV (1984) Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys J 283:694.  https://doi.org/10.1086/162356ADSCrossRefGoogle Scholar
  73. 73.
    Porth O et al (2014) Rayleigh-Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon Not R Astron Soc 443(1):547–558.  https://doi.org/10.1093/mnras/stu1082ADSCrossRefGoogle Scholar
  74. 74.
    van der Swaluw E et al (2001) Pulsar wind nebulae in supernova remnants. Astron Astrophys 380(1):309–317.  https://doi.org/10.1051/0004-6361:20011437ADSCrossRefGoogle Scholar
  75. 75.
    Kargaltsev O et al (2013) Gamma-ray and X-ray properties of pulsar wind nebulae and unidentified Galactic TeV sources, p 16Google Scholar
  76. 76.
    Carrigan S et al (2007) Establishing a connection between high-power pulsars and very-high-energy gamma-ray sources. In: 30th international cosmic ray conference, Meirda, Mexico, pp 659–662Google Scholar
  77. 77.
    Aharonian F et al (2006) The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys J 636(2):777–797.  https://doi.org/10.1086/498013ADSCrossRefGoogle Scholar
  78. 78.
    Lorimer DR et al (2006) The Parkes Multibeam Pulsar Survey VI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon Not R Astron Soc 372:777–800.  https://doi.org/10.1111/j.1365-2966.2006.10887.xADSCrossRefGoogle Scholar
  79. 79.
    Martín J et al (2012) Time-dependent modelling of pulsar wind nebulae: study on the impact of the diffusion-loss approximations. Mon Not R Astron Soc 427(1):415–427.  https://doi.org/10.1111/j.1365-2966.2012.22014.xADSCrossRefGoogle Scholar
  80. 80.
    Torres D et al (2014) Time-dependent modeling of TeV-detected, young pulsar wind nebulae. J High Energy Astrophys 1–2:31–62.  https://doi.org/10.1016/j.jheap.2014.02.001ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsComplutense University of MadridMadridSpain

Personalised recommendations