An Introduction to Very-High-Energy Astrophysics

  • David Carreto FidalgoEmail author
Part of the Springer Theses book series (Springer Theses)


Astronomy is one of the oldest natural sciences and has always been an important part of human culture. Astronomical observations can be traced back to the Stone Age manifesting itself in ancient beliefs and structures such as references to Egyptians gods or Stonehenge. For most part of astronomy’s history observations were limited to the light visible to the human eye. Only in the 20th century technological advances, the development of new techniques and serendipities lead to the opening up of the whole of the electromagnetic spectrum. At the low-energy end of the spectrum, the first observations were made from the ground by radio telescopes in the late 1930s, whereas at the high-energy end the first evidence of cosmic gamma rays came from detectors aboard satellites in the late 1960s. The reason why high-energy astrophysics is primarily conducted from space, lies in the Earth’s atmosphere as illustrated by Fig. 1.1. While for the visible and the radio part of the spectrum the atmosphere is mostly transparent, X-rays and gamma rays are completely absorbed by it. Only at the highest energy end, above a few tens of GeV, observing the violent absorption process in the atmosphere makes the detection of gamma rays possible from the ground.


  1. 1.
    López Coto R (2017 July) Very-high-energy \(\gamma \)-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs . Springer International Publishing. ISBN 978-3-319-44751-3.CrossRefGoogle Scholar
  2. 2.
    Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33(1):323–382. Scholar
  3. 3.
    Hinton J, Hofmann W (2009) Teraelectronvolt astronomy. Ann Rev Astron Astrophys 47(1):523–565. Scholar
  4. 4.
    Atwood W et al (2013) Pass 8: Toward the full realization of the Fermi-LAT scientific potential. arXivGoogle Scholar
  5. 5.
    Kerr M (2010) Likelihood methods for the detection and characterization of gamma-ray pulsars with the Fermi large area telescope. Ph.D. thesisGoogle Scholar
  6. 6.
    Thompson DJ (2008) Gamma ray astrophysics: the EGRET results. Rep Progr Phys 71(11):116901. Scholar
  7. 7.
    Ackermann M et al (2012) The Fermi large area telescope on orbit: event classification, instrument response functions, and calibration. Astrophys J Suppl Ser 203(1):4. Scholar
  8. 8.
    Acero F et al (2015) Fermi large area telescope third source catalog. Astrophys J Suppl Ser 218(2):23. Scholar
  9. 9.
    Atwood WB et al (2009) The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys J 697(2):1071–1102. Scholar
  10. 10.
    de Naurois M, Mazin D (2015) Ground-based detectors in very-high-energy gamma-ray astronomy. Comptes Rendus Phys 16(6–7):610–627. Scholar
  11. 11.
    Aleksić J et al (2016) The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astropart Phys 72:76–94. Scholar
  12. 12.
    Parsons RD et al (2015) HESS II data analysis with ImPACT. In: 34th international cosmic ray conference. The Hague, NetherlandsGoogle Scholar
  13. 13.
    The Cherenkov Telescope Array Consortium et al (2017) Science with the Cherenkov Telescope ArrayGoogle Scholar
  14. 14.
    Amenomori M et al (2015) Search for gamma rays above 100 TeV from the Crab Nebula with the Tibet Air Shower Array and the 100 m\(^2\) Muon detector. Astrophys J 813(2):98. Scholar
  15. 15.
    Bartoli B et al (2013) TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys J 779(1):27. Scholar
  16. 16.
    Abdo AA et al (2009b) Milagro observations of multi-TeV emission from galactic sources in the Fermi bright list. Astrophys J 700(2):L127–L131. Scholar
  17. 17.
    Abeysekara AU et al (2017) The 2HWC HAWC observatory gamma-ray catalog. Astrophys J 843(1):40. Scholar
  18. 18.
    Ackermann M et al (2016) 2FHL: the second catalog of hard Fermi-LAT sources. Astrophys J Suppl Ser 222(1):5. Scholar
  19. 19.
    Di Sciascio G (2016) The LHAASO experiment: from gamma-ray astronomy to cosmic rays. Nuclear Part Phys Proc 279–281:166–173. Scholar
  20. 20.
    Tluczykont M et al (2014) The HiSCORE concept for gamma-ray and cosmic-ray astrophysics beyond 10TeV. Astropart Phys 56:42–53. Scholar
  21. 21.
    Knödlseder J (2016) The future of gamma-ray astronomy. Comptes Rendus Phys 17(6):663–678. Scholar
  22. 22.
    Bonning EW et al (2007) Accretion disk temperatures and continuum colors in QSOs. Astrophys J 659(1):211–217. Scholar
  23. 23.
    Wakely SP, Horan D (2007) TeVCat: an online catalog for very high energy gamma-ray astronomy. In: 30th international cosmic ray conference. Merida, MexicoGoogle Scholar
  24. 24.
    Branch D, Wheeler JC (2017) Supernova explosions. Astronomy and Astrophysics Library, Springer, Berlin Heidelberg. ISBN 978-3-662-55052-6CrossRefGoogle Scholar
  25. 25.
    Malkov MA, Drury LO (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Progr Phys 64(4):429–481. Scholar
  26. 26.
    Drury LO (2012) Origin of cosmic rays. Astropart Phys 39–40(1):52–60. Scholar
  27. 27.
    Hewitt JW, Lemoine-Goumard M (2015) Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies. Comptes Rendus Phys 16(6–7):674–685. Scholar
  28. 28.
    Liu QZ et al (2006) Catalogue of high-mass X-ray binaries in the Galaxy (4th edition). Astron Astrophys 455(3):1165–1168. Scholar
  29. 29.
    Liu QZ et al (2007) A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (fourth edition). Astron Astrophys 469(2):807–810. Scholar
  30. 30.
    Dubus G (2013) Gamma-ray binaries and related systems. Astron Astrophys Rev 21(1):64. Scholar
  31. 31.
    Dubus G (2015) Gamma-ray emission from binaries in context. Comptes Rendus Phys 16(6–7):661–673. Scholar
  32. 32.
    Massi M et al (2017) The black hole candidate LS I+61\(^{\circ }\)303. Mon Not R Astron Soc 468(3):3689–3693. Scholar
  33. 33.
    Aharonian F et al (2007) Detection of extended very-high-energy \(\gamma \)-ray emission towards the young stellar cluster Westerlund 2. Astron Astrophys 467(3):1075–1080. Scholar
  34. 34.
    Bykov AM (2014) Nonthermal particles and photons in starburst regions and superbubbles. Astron Astrophys Rev 22(1):77. Scholar
  35. 35.
    Leser E et al (2017) First results of Eta car observations with H.E.S.S.II. In: 35th international cosmic ray conference. Busan, South KoreaGoogle Scholar
  36. 36.
    Padovani P et al (2017) Active galactic nuclei: what’s in a name. Astron Astrophys Rev 25(1):2.
  37. 37.
    Böttcher M et al (2013) Leptonic and hadronic modeling of Fermi-detected blazars. Astrophys J 768(1):54. Scholar
  38. 38.
    Ohm S (2016) Starburst galaxies as seen by gamma-ray telescopes. Comptes Rendus Phys 17(6):585–593. Scholar
  39. 39.
    Kumar P, Zhang B (2015) The physics of gamma-ray bursts & relativistic jets. Phys Rep 561(Oct 2014):1–109. Scholar
  40. 40.
    Abbott BP et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J 848(2):L12. Scholar
  41. 41.
    Inoue S et al (2013) Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astropart Phys 43:252–275. Scholar
  42. 42.
    Bertone G et al (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405(5–6):279–390. Scholar
  43. 43.
    Longair MS (2011) High energy astrophysics, 3rd edn. Cambridge University Press, Cambridge. ISBN 0521756189Google Scholar
  44. 44.
    Lorenz E, Wagner R (2012) Very-high energy gamma-ray astronomy. Eur Phys J H 37(3):459–513. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsComplutense University of MadridMadridSpain

Personalised recommendations