Skip to main content

Mast Cells as Therapeutic Target in Cancer

  • Chapter
  • First Online:
The Mast Cell
  • 385 Accesses

Abstract

Reducing mast cells number is a therapeutic approach in mastocytosis and other diseases in which mast cells number is increased. The number of mast cells may be reduced by the targeted induction of apoptosis or by blocking their recruitment, migration and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin C, Metcalfe DD (2004) The biology of kit in disease and the application of pharmacogenetics. J Allergy Clin Immunol 114:13–19

    Article  CAS  Google Scholar 

  • Aoyama T, Ino Y, Ozeki M et al (1984) Pharmacological studies of FUT-175, nanafamstat mesilate. I. Inhibition of protease activity in vitro and in vivo experiments. Jap J Pharmacol 35:203–227

    Article  CAS  Google Scholar 

  • Arock M, Valent P (2010) Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol 3:497–516

    Article  Google Scholar 

  • Bowrey PF, King J, Magarey C et al (2000) Histamine, mast cells and tumour cell proliferation in breast cancer: does preoperative cimetidine administration have an effect? Br J Cancer 82:167–170

    Article  CAS  Google Scholar 

  • Brandi G, Tavolari S, de Rosa F et al (2012) Antitumoral efficacy of the protease inhibitor gabexate mesilase in colon cancer cells harbouring KRAS, BRAFand PIK3CA utations. PLoS ONE 7:e41374

    Article  Google Scholar 

  • Cerny-Reiter S, Rabenhorst A, Stefanzl G et al (2015) Long-term treatment with imatinib results in profound mast cell deficiency in Ph+ chronic myeloid leukemia. Oncotarget 6:3071–3084

    Article  Google Scholar 

  • Dubreuil P, Letard S, Ciufolini M et al (2009) Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE 4:e7258

    Article  Google Scholar 

  • Erba F, Fiorucci L, Pascarella S et al (2001) Selective inhibition of human mast cell tryptase by gabexate mesylase, an antiproteinase drug. Biochem Pharmacol 61:271–276

    Article  CAS  Google Scholar 

  • Fujiwara Y, Furukawa K, Haruki K et al (2011) Nafamostat mesilate can prevent adhesion, invasion and peritoneal dissemination of pancreatic cancer thorough nuclear factor kappa-B inhibition. J Hepatobiliary Pancreat Sci 18:731–739

    Article  Google Scholar 

  • Gleixner KV, Mayerhofer M, Sonneck K (2007) Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 92:1451–1459

    Article  CAS  Google Scholar 

  • Gotlib J (2006) KIT mutations in mastocytosis and their potential as therapeutic targets. Immunol Allergy Clin North Am 26:575–592

    Article  Google Scholar 

  • Gotlib J, Berube C, Growney JD et al (2005) Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 106:2865–2870

    Article  CAS  Google Scholar 

  • Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104:19977–19982

    Article  CAS  Google Scholar 

  • Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    Article  CAS  Google Scholar 

  • Irani AA, Nilsson G, Ashman LK et al (1995) Dexamethasone inhibits the development of mast cells from dispersed human fetal liver cells cultured in the presence of recombinant human stem cell factor. Immunology 84:72–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HJ, Oh HA, Nam SY et al (2013) The critical role of mast cell-derived hypoxia-inducible factor-1α in human and mice melanoma growth. Int J Cancer 132:2492–2501

    Article  CAS  Google Scholar 

  • Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444:195–198

    Article  CAS  Google Scholar 

  • Kiwamoto T, Kawasaki N, Paulson JC et al (2012) Siglec-8 as a drug ale target to treat eosinophil and mast cell-associated conditions. Phramacol Ther 135:327–336

    Article  CAS  Google Scholar 

  • Kneilling M, Hultner L, Pichler BJ et al (2007) Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum 56:1806–1816

    Article  CAS  Google Scholar 

  • Le Cesne A, Blay JY, Bui BN et al (2010) Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46:1344–1351

    Article  Google Scholar 

  • London CA, Hannah AL, Zadovoskaya R et al (2003) Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin Cancer Res 9:2755–2768

    CAS  PubMed  Google Scholar 

  • Menegatti E, Bolognesi M, Scalia S et al (1986) Gabexate mesylate inhibition of serine proteases: thermodynamic and computer-graphic analysis. J Pharmaceutical Sci 75:1171–1174

    Article  CAS  Google Scholar 

  • Metcalfe DD (2008) Mast cells and mastocytosis. Blood 112:946–956

    Article  CAS  Google Scholar 

  • Mitry E, Hammel P, Deplanque G et al (2010) Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 66:395–403

    Article  CAS  Google Scholar 

  • Molica S, Montillo M, Ribatti D et al (2007) Intense reversal of bone marrow angiogenesis after sequential fludarabine-induction and c-consolidation therapy in advanced chronic lymphocytic leukemia. Haematologica 92:1367–1374

    CAS  PubMed  Google Scholar 

  • Moqbel R, Walsh GM, Macdonald AJ et al (1986) Effect of disodium cromoglycate on activation of human eosinophils and neutrophils following reversed (anti-IgE) anaphylaxis. Clin Allergy 16:73–83

    Article  CAS  Google Scholar 

  • Nordlund JJ, Askenase PW (1983) The effect of histamine, antihistamines, and a mast cell stabilizer on the growth of cloudman melanoma cells in DBA/2 mice. J Invest Dermatol 81:28–31

    Article  CAS  Google Scholar 

  • Peter B, Cerny-Reiterer S, Hadzijusufovic E et al (2014) The pan-Bcl-2 blocker obatoclax promotes the expression of puma, noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells. J Leukoc Biol 95:95–104

    Article  Google Scholar 

  • Pipkorn U, Hammarlund A, Enerbäck L (1989) Prolonged treatment with topical glucorticoids results in an inhibition of the allergen-induced weal-and-flare response and a reduction in skin mast cell numbers and histamine content. Clin Exp Allergy 19:19–25

    Google Scholar 

  • Pittoni P, Tripodo C, Piconese S et al (2011a) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    Article  CAS  Google Scholar 

  • Pittoni P, Piconese S, Tripodo C et al (2011b) Tumor-intrinsic and -extrinsic roles of c-kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30:757–769

    Article  CAS  Google Scholar 

  • Prenen H, Cools J, Mentens N et al (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12:2622–2627

    Article  CAS  Google Scholar 

  • Pryer NK, Lee LB, Zadovaskaya R et al (2003) Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin Cancer Res 9:5729–5734

    Google Scholar 

  • Ramakrishnan G, Jagan S, Kamaraj S et al (2009) Silymarin attenuated mast cell recruitment thereby decreased the expressions of matrix metalloproteinases-2 and 9 in rat liver carcinogenesis. Invest New Drugs 27:233–240

    Article  CAS  Google Scholar 

  • Reber LL, Marichal T, Galli SJ (2012) New models for analyzing mast cell functions in vivo. Trends Immunol 33:613–625

    Article  CAS  Google Scholar 

  • Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8

    Article  CAS  Google Scholar 

  • Ribatti D, Crivellato E (2014) Mast cell ontogeny: an historical overview. Immunol Lett 159:11–14

    Article  CAS  Google Scholar 

  • Samoszuk M, Corwin MA (2003a) Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 107:159–163

    Article  CAS  Google Scholar 

  • Samoszuk M, Corwin MA (2003b) Acceleration of tumor growth and peri-tumoral blood clotting by imatinib mesylate (gleevec). Int J Cancer 106:647–652

    Article  CAS  Google Scholar 

  • Santos DD, Hatjiharissi E, Tournilhac O et al (2006) CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom’s macroglobulinemia and mast cell disorders. Clin Lymphoma Myeloma 6:478–483

    Article  CAS  Google Scholar 

  • Schittenhelm MM, Shiraga S, Schroeder A et al (2006) Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66:473–481

    Article  CAS  Google Scholar 

  • Schneweiss MA, Peter Barbara, Blatt Katharina et al (2016) The multi-kinase inhibitor DCC-2618 inhibits proliferation and survival of neoplastic mast cells and other cell types involved in systemic mastocytosis. Blood 128:1965

    Google Scholar 

  • Shah NP, Lee FY, Luo R (2006) Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108:286–291

    Article  CAS  Google Scholar 

  • Smith SJ, Piliponsky AM, Rosenhead F et al (2002) Dexamethasone inhibits maturation, cytokine production and Fc epsilon RI expression of human cord blood-derived mast cells. Clin Exp Allergy 32:906–913

    Article  CAS  Google Scholar 

  • Soucek L, Lawlor ER, Soto D (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  CAS  Google Scholar 

  • Ustun C, DeRemer DL, Akin C (2011) Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 35:1143–1152

    Article  CAS  Google Scholar 

  • von Bubnoff N, Gorantla SHP, Kancha RK et al (2005) The systemic mastocytosis-specific activating ckit mutation D816V can be inhibited by the tyrosine kinase inhibitor AMN107. Leukemia 19:1670–1671

    Article  Google Scholar 

  • Yoon WH, Jung YJ, Kim TD et al (2004) Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix metalloproteinases and angiogenesis. Clin Cancer Res 10:4517–4526

    Article  CAS  Google Scholar 

  • Zhang T, Finn DF, Barlow JW et al (2016) Mast cell stabilizers. Eur J Pharmacol 778:158–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2019). Mast Cells as Therapeutic Target in Cancer. In: The Mast Cell . Springer, Cham. https://doi.org/10.1007/978-3-030-24190-2_12

Download citation

Publish with us

Policies and ethics