Skip to main content

Detection of Ship from Satellite Images Using Deep Convolutional Neural Networks with Improved Median Filter

  • Chapter
  • First Online:
Book cover Artificial Intelligence Techniques for Satellite Image Analysis

Abstract

Detection of maritime object is of greater attention in the field of satellite image processing applications in order to ensure the security and traffic control. Even though several approaches were built in the past few years, still it requires proper revamp in the architecture to focus toward the reduction of barriers to improve the performance of ship identification or appropriate vessel detection. The inference due to cluttered scenes, clouds, and islands in between the ocean is the greater challenge during the classification of ship or vessel. In this paper, we proposed a novel ship detection method called deep neural method which works very faster and based on the concept on deep learning methodology. Experimental results provide the better accuracy, and time complexity also reduces little further when compared to the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Z, Wang H, Weng H, Yang L (2016) Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci Remote Sens Lett 13(8):1074–1078

    Article  Google Scholar 

  2. Zou Z, Shi Z (Oct. 2016) Ship detection in spaceborne optical image with SVD networks. IEEE Trans Geosci Remote Sens 54(10):5832–5845

    Article  Google Scholar 

  3. Yang G, Li B, Ji S, Gao F, Xu Q (Mar. 2014) Ship detection from optical satellite images based on sea surface analysis. IEEE Geosci Remote Sens Lett 11(3):641–645

    Article  Google Scholar 

  4. Zhu C, Zhou H, Wang R, Guo J (2010) A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans Geosci Remote Sens 48(9):3446–3456

    Article  Google Scholar 

  5. Tang J, Deng C, Huang G-B, Zhao B (Mar. 2015) Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53(3):1174–1185

    Article  Google Scholar 

  6. Proia N, Pagé V (2010) Characterization of a Bayesian ship detection method in optical satellite images. IEEE Geosci Remote Sens Lett 7(2):226–230

    Article  Google Scholar 

  7. Shi Z, Yu X, Jiang Z, Li B (Aug. 2014) Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans Geosci Remote Sens 52(8):4511–4523

    Article  Google Scholar 

  8. Qi S, Ma J, Lin J, Li Y, Tian J (2015) Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images. IEEE Geosci Remote Sens Lett 12(7):1451–1455

    Article  Google Scholar 

  9. Bi F, Zhu B, Gao L, Bian M (2012) A visual search inspired computational model for ship detection in optical satellite images. IEEE Geosci Remote Sens Lett 9(4):749–753

    Article  Google Scholar 

  10. Shi Z, Yu X, Jiang Z, Li B (2014) Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans Geosci Remote Sens 52(8):4511–4523

    Article  Google Scholar 

  11. Yang G, Li B, Ji S, Gao F, Xu Q (2014) Ship detection from optical satellite images based on sea surface analysis. IEEE Geosci Remote Sens Lett 11(3):641–645

    Article  Google Scholar 

  12. Tang J, Deng C, Huang GB, Zhao B (2015) Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53(3):1174–1185

    Article  Google Scholar 

  13. Crisp DJ (2004) The state-of-the-art in ship detection in synthetic aperture radar imagery. Aust. Gov., Dept. Defence, Edinburgh, S. Aust., Australia, DSTO-RR-0272

    Google Scholar 

  14. Lure FYM, Rau Y-C (1994) Detection of ship tracks in AVHRR cloud imagery with neural networks. Proc IEEE IGARSS 3:1401–1403

    Google Scholar 

  15. Weiss JM, Luo R, Welch RM (1997) Automatic detection of ship tracks in satellite imagery. Proc IEEEIGARSS 1:160–162

    Google Scholar 

  16. Xia Y, Wan SH, Yue LH (2011) A novel algorithm for ship detection based on dynamic fusion model of multi-feature and support vector machine. In Proc IEEE 6th ICIG, pp. 521–526

    Google Scholar 

  17. Chen F, Yu W, Liu X, Wang K, Gong L, Lv W (2011) Graph-based ship extraction scheme for optical satellite image. In Proc IEEE IGARSS, pp. 491–494

    Google Scholar 

  18. Eldhuset K (1996) An automatic ship and ship wake detection system for space borne SAR images in coastal regions. IEEE Trans Geo Sci Remote Sens 34(4):1010–1019

    Article  Google Scholar 

  19. Dragošvi’c MV, Vachon PW (2008) Estimation of ship radial speed by adaptive processing of RADARSAT-1 fine mode data. IEEE Geosci Remote Sens Lett 5(4):678–682, Oct

    Article  Google Scholar 

  20. Li X, Chong J (2008) Processing of envis at alternating polarization data for vessel detection. IEEE Geosci Remote Sens Lett 5(2):271–275

    Article  Google Scholar 

  21. Mirghasemi S, Yazdi HS, Lotfizad M (2012) A target-based color space for sea target detection. Appl Intell 36(4):960–978

    Article  Google Scholar 

  22. Zhu C, Zhou H, Wang R, Guo J (Sep. 2010) A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans Geosci Remote Sens 48(9):3446–3456

    Article  Google Scholar 

  23. A. J. Morse and M. A. Protheroe, “Vessel classification as part of an automated vessel traffic monitoring system using SAR data,” Int J Remote Sens, vol. 18, no. 13, pp. 2709–2712, Sep. 1997

    Google Scholar 

  24. Vachon PW, Campbell J, Bjerklund C, Dobson F, Rey M (1997) Ship detection by the RADARSAT SAR: validation of detection model predictions. Can J Remote Sens 23(1):48–59

    Article  Google Scholar 

  25. Wang P, Chong J, Wang H (2000) Ship detection of the airborne SAR images. Proc IEEE IGARSS 1:348–350

    Google Scholar 

  26. Han ZY, Chong JS, Zhu MH (2005) Ship detection in SAR images using multi-polarimetric information. In Proc IEEEIGARSS, pp. 4729–4732

    Google Scholar 

  27. C. Liu, P. W. Vachon, and G. W. Geling, “Improved ship detection using polarimetric SAR data,” in Proc. IEEE IGARSS, , 2004, vol. 3, pp. 1800–1803

    Google Scholar 

  28. Tello M, Martıacutenez CL, Mallorqui JJ (2005) A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci Remote Sens Lett 2(2):201–205

    Article  Google Scholar 

  29. Margarit G, Mallorqui JJ, Fortuny-Guasch J, Lopez-Martinez C (2009) Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions. IEEE Trans Geosci Remote Sens 47(4):1224–1235

    Article  Google Scholar 

  30. Corbane C, Najman L, Pecoul E, Demagistri L, Petit M (2010) A complete processing chain for ship detection using optical satellite imagery. Int J Remote Sens 31(22):5837–5854

    Article  Google Scholar 

  31. Weiss JM, Luo R, Welch RM (1997) Automatic detection of ship tracks in satellite imagery. Proc IEEE IGARSS 1:160–162

    Google Scholar 

  32. Tello M, Lopez-Martinez C, Mallorqui J (2005) A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci Remote Sens Lett 5(2):201–205

    Article  Google Scholar 

  33. Lin I-I, Khoo V (1997) Computer-based algorithm for ship detection from ERS-SAR imagery. In Proc 3rd ERS Symp Space Service Environ, vol. 414, p. 1411

    Google Scholar 

  34. Crisp D (2004) Thestate-of-the-artinshipdetectioninsyntheticapertureradar imagery. Defence Sci Technol Org, Melbourne, Australia

    Google Scholar 

  35. Greidanus H, Clayton P, Indregard M, Staples G, Suzuki N, Vachoir P, Wackerman C, Tennvassas T, Mallorqui J, Kourti N, Ringrose R, Melief H (2004) Benchmarking operational SAR ship detection. Proc IEEE IGARSS, Anchorage, AK 6:4215–4218

    Google Scholar 

  36. Opelt A, Pinz A, Fussenegger M, Auer P (2006) Generic object recognition with boosting. IEEE Trans Pattern Anal Mach Intell 28(3):416–431

    Article  MATH  Google Scholar 

  37. Oliver CJ, Blacknell D, White RG (1996) Optimum edge detection in SAR. Proc Inst Elect Eng—Radar, Sonar Navig 143(1):31–40

    Article  Google Scholar 

  38. Liu C, Vachon P, Geling G (2005) Improved ship detection with airborne polarimetric SAR data. Can J Remote Sens 31(1):122–131

    Article  Google Scholar 

  39. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. M.S. thesis, Mach. Vis. Group, Infotech Oulu, University of Oulu, Oulu, Finland

    Google Scholar 

  40. Burgess DW (1993) Automatic ship detection in satellite multispectral imagery. Photogramm Eng Remote Sens 59(2):229–237

    MathSciNet  Google Scholar 

  41. Corbane C, Marre F, Petit M (2008) Using SPOT-5HRG data in panchromatic mode for operational detection of small ships in tropical area. Sensors 8(5):2959–2973

    Article  Google Scholar 

  42. Corbane C, Pecoul E, Demagistri L, Petit M (2008) Fully automated procedure for ship detection using optical satellite imagery. Proc SPIE-Remote Sens Inland, Coastal, Ocean Waters 7150:71500R-1–71500R-13

    Google Scholar 

  43. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In Proc IEEE Comput Soc Conf CVPR, pp 886–893

    Google Scholar 

  44. Wang Y, Liu A (2012) A hierarchical ship detection scheme for high resolution SAR images. IEEE Trans Geosci Remote Sens 50(10):4173–4184

    Article  Google Scholar 

  45. Zhu CR, Wang RS (2012) Local multiple patterns based multiresolution gray-scale and rotation-invariant texture classification. Pattern Recogn 187:93–108

    Google Scholar 

  46. Qi S, Ma J, Tao C, Yang C, Tian J (2013) A robust directional saliencybased method for infrared small-target detection under various complex backgrounds. IEEE Geosci Remote Sens Lett 10(3):495–499

    Article  Google Scholar 

  47. Wackerman CC, Friedman KS, Pichel WG, Clemente-Colon P, Li X (2001) Automatic detection of ships in RADARSAT-1 SAR imagery. Can J Remote Sens 27(5):568–577

    Article  Google Scholar 

  48. Galleguillos C, Belongie S (2010) Context based object categorization: a critical survey. Comput Vis Image Understand 114(6):712–722

    Article  Google Scholar 

  49. Hsu C, Chang C, Lin C (2004) A practical guide to support vector classification. [Online]. Available: http://www.csie.ntu.edu.tw/ ~cjlin/papers/guide/guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iwin Thanakumar Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, S.I.T., Sasikala, J., Juliet, D.S. (2020). Detection of Ship from Satellite Images Using Deep Convolutional Neural Networks with Improved Median Filter. In: Hemanth, D. (eds) Artificial Intelligence Techniques for Satellite Image Analysis. Remote Sensing and Digital Image Processing, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-24178-0_4

Download citation

Publish with us

Policies and ethics