Skip to main content

Classification of Field-Level Crop Types with a Time Series Satellite Data Using Deep Neural Network

  • Chapter
  • First Online:
Artificial Intelligence Techniques for Satellite Image Analysis

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 24))

Abstract

Crop-type classification has been relied upon on only spectral/spatial features. It does not provide the in-season information for researchers and decision makers for both practical and scientific purposes. While satellite images have desirable spectral and spatial information for classification, the ability to extract temporal information in satellite data remains a challenge due to revisiting frequency and gaps in the time period of capturing the data. To circumvent this challenge and generate more accurate results for an in-season crop-type classification, we have used Rectified Linear Unit (RLU) approach based on the concept of deep neural networks for intelligent and scalable computation of the classification process. The work was carried out on Nanjangud Taluk located in Mysuru District, Karnataka state on a Landsat data (multi-temporal scene) from 2010 to 2015. The results indicate that RLU shows an improvement of 5% to 15% for overall classification accuracy at 3 classes over the traditional against support vector machine. In comparison with KSRSC data set, this study reveals an accuracy of 85% for classifying rice and banana with an improvement of 10% over KSRCS crop-filed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolton DK, Friedl MA (2013) Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric For Meteorol 173:74–84. https://doi.org/10.1016/j.agrformet.2013.01.007

    Article  Google Scholar 

  2. Gao F, Anderson MC, Zhang X, Yang Z, Alfieri JG, Kustas WP, Mueller R, Johnson DM, Prueger JH (2017) Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ 188:9–25. https://doi.org/10.1016/j.rse.2016.11.004

    Article  Google Scholar 

  3. King L, Adusei B, Stehman SV, Potapov PV, Song X-P, Krylov A, Di Bella C, Loveland TR, Johnson DM, Hansen MC (2017) A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens Environ 195:13–29. https://doi.org/10.1016/j.rse.2017.03.047

    Article  Google Scholar 

  4. Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  5. Krizhevsky A, Sutskever I, Hinton GE (2012). ImageNet Classification With Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems

    Google Scholar 

  6. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  7. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  8. Schmidt G, Jenkerson C, Masek J, Vermote E, Gao F (2013) Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description. US Geological Survey

    Google Scholar 

Download references

Acknowledgement

The author graciously thanks Dr. Dwarkish G S, professor, Hydraulics Department, NITK, Mangalore, for providing the remote-sensed data for this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayanth, J., Shalini, V.S., Ashok Kumar, T., Koliwad, S. (2020). Classification of Field-Level Crop Types with a Time Series Satellite Data Using Deep Neural Network. In: Hemanth, D. (eds) Artificial Intelligence Techniques for Satellite Image Analysis. Remote Sensing and Digital Image Processing, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-24178-0_3

Download citation

Publish with us

Policies and ethics