Skip to main content

Anastomotic Devices for Coronary Artery Surgery

  • Chapter
  • First Online:
Cardiac Surgery
  • 244 Accesses

Abstract

The cornerstone of coronary artery bypass surgery undoubtedly remains a perfectly constructed anastomosis, whether it be for graft inflow, such as that between the aorta and a bypass conduit, or for distal perfusion, namely a graft touching down on a target vessel. Multiple studies have demonstrated the long-term efficacy of coronary surgery in alleviating angina syndromes, in enhancing left ventricular function, and, consequently, in improving survival in select patients. Nevertheless, coronary surgeons need to continually strive to do better; the perfect anastomosis is, in and of itself, now no longer enough. With drug-eluting coronary stents and transcatheter therapies rapidly continuing to improve, those patients who require surgery demand more minimally-invasive procedures, through ever-smaller incisions, with more durable grafts, associated with superior long-term patency, and they will not accept the small, but finite risk of stroke that has traditionally been associated with coronary grafting. Anastomotic devices are uniquely suited to fill this niche. They afford the coronary surgeon the opportunity to evolve their technique without compromising on quality. They can eliminate inter and intra-surgeon variability in technical proficiency ensuring rapid construction of reliable, reproducible, and compliant anastomoses, often in difficult-to-access areas, while concomitantly reducing the risk of perioperative neurological injury. The majority of anastomotic devices that have been introduced into the market over the past two decades or so are no longer in use. However, there are still a few that are readily available, with substantial clinical evidence supporting their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomized, clinical SYNTAX trial. Lancet. 2013;381:629–38.

    Article  PubMed  Google Scholar 

  2. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  3. Weintraub WS, Grau-Sepulveda MV, Weiss JM, et al. Comparative effectiveness of revascularization strategies. N Engl J Med. 2012;366:1467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kappetein AP, Head SJ, Morice MC, et al. Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg. 2013;43:1006–13.

    Article  PubMed  Google Scholar 

  5. Parasca CA, Head SJ, Milojevic M, et al. Incidence, characteristics, predictors, and outcomes of repeat revascularization after percutaneous coronary intervention and coronary artery bypass grafting: the SYNTAX trial at 5 years. JACC Cardiovasc Interv. 2016;9:2493–507.

    Article  PubMed  Google Scholar 

  6. Vallely MP, Potger K, McMillan D, et al. Anaortic techniques reduce neurologic morbidity after off-pump coronary artery bypass surgery. Heart Lung Circ. 2008;17:299–304.

    Article  PubMed  Google Scholar 

  7. Patel NC, Hemli JM. Anastomotic devices in coronary artery surgery: it is about the anastomosis. Multimed Man Cardiothorac Surg. 2013; https://doi.org/10.1093/mmcts/mmt019.

    Article  PubMed  Google Scholar 

  8. Emmert MY, Grunenfelder J, Scherman J, et al. HEARTSTRING enabled no-touch proximal anastomosis for off-pump coronary artery bypass grafting: current evidence and technique. Interact Cardiovasc Thorac Surg. 2013;17:538–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Emmert MY, Seifert B, Wilhelm M, Grunenfelder J, Falk V, Salzberg SP. Aortic no-touch technique makes the difference in off-pump coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2011;142:1499–506.

    Article  PubMed  Google Scholar 

  10. Formica F, Tata G, Singh G, et al. Incidence of perioperative stroke in clampless aortic anastomosis during off-pump coronary artery bypass grafting. Heart Vessel. 2018;33:595–604.

    Article  Google Scholar 

  11. Hilker M, Arlt M, Keyser A, et al. Minimizing the risk of perioperative stroke by clampless off-pump bypass surgery: a retrospective observational analysis. J Cardiothorac Surg. 2010;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakopoulos AG, Jacobson JG, Wilson DR, Huse WM. ‘Beyond beating heart surgery:’ Heartstring device protects against perioperative neurological events. Innovations (Phila). 2010;5:118–21.

    Article  Google Scholar 

  13. Douglas JM Jr, Spaniol SE. A multimodal approach to the prevention of postoperative stroke in patients undergoing coronary artery bypass surgery. Am J Surg. 2009;197:587–90.

    Article  PubMed  Google Scholar 

  14. Wilhelm MJ, Syburra T, Furrer L, et al. Avoidance of aortic side-clamping for proximal bypass anastomoses: better short-term outcome? Heart Surg Forum. 2011;14:E360–5.

    Article  PubMed  Google Scholar 

  15. Biancari F, Yli-Pyky S. Meta-analysis on the use of the Heartstring anastomotic device to prevent stroke in patients undergoing off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg. 2011;40:1236–40.

    PubMed  Google Scholar 

  16. El Zayat H, Puskas JD, Hwang S, et al. Avoiding the clamp during off-pump coronary artery bypass reduces cerebral embolic events: results of a prospective randomized trial. Interact Cardiovasc Thorac Surg. 2012;14:12–6.

    Article  PubMed  Google Scholar 

  17. Eldaif SM, Thourani VH, Puskas JD. Cerebral emboli generation during off-pump coronary artery bypass grafting with a clampless device versus partial clamping of the ascending aorta. Innovations (Phila). 2010;5:7–11.

    Article  Google Scholar 

  18. Guerrieri Wolf L, Abu-Omar Y, Choudhary BP, Pigott D, Taggart DP. Gaseous and solid cerebral microembolization during proximal aortic anastomoses in off-pump coronary surgery: the effect of an aortic side-biting clamp and two clampless devices. J Thorac Cardiovasc Surg. 2007;133:485–93.

    Article  PubMed  Google Scholar 

  19. Formica F, D’Alessandro S, Messina LA. Clampless facilitated anastomosis with Heartstring to reduce cerebral damage during off-pump coronary bypass grafting. Don’t forget it: easy to use! J Thorac Cardiovasc Surg. 2018;155:2021–2.

    Article  PubMed  Google Scholar 

  20. Weber A, Tavakoli R, Genoni M. Ascending aortic dissection after proximal bypass anastomotic device. J Card Surg. 2008;23:585–6.

    Article  PubMed  Google Scholar 

  21. Dohmen G, Hatam N, Goetzenich A, Mahnken A, Autschbach R, Spillner J. PAS-Port clampless proximal anastomotic device for coronary bypass surgery in porcelain aorta. Eur J Cardiothorac Surg. 2011;39:49–52.

    Article  PubMed  Google Scholar 

  22. Yamaguchi S, Watanabe G, Tomita S, Ohtake H, Nagamine H, Iino K. Use of skeletonized radial artery graft with the PAS-Port proximal anastomotic device. Ann Thorac Surg. 2009;87:1910–3.

    Article  PubMed  Google Scholar 

  23. Puskas JD, Halkos ME, Balkhy H, et al. Evaluation of the PAS-Port proximal anastomosis system in coronary artery bypass surgery (the EPIC trial). J Thorac Cardiovasc Surg. 2009;138:125–32.

    Article  PubMed  Google Scholar 

  24. Demertzis S, Trunfio R, Faletra F, Wyttenbach R, Siclari F. Sutureless proximal anastomosis using the PAS-Port system: six-month patency and five-year follow-up in ‘all-comers. Ann Thorac Surg. 2010;90:1507–14.

    Article  PubMed  Google Scholar 

  25. Verberkmoes NJ, Mokhles MM, Bramer S, et al. Clinical outcome of the PAS-Port proximal anastomosis system in off-pump coronary artery bypass grafting in 201 patients. J Cardiovasc Surg. 2013;54:389–95.

    CAS  Google Scholar 

  26. Kempfert J, Opfermann UT, Richter M, Bossert T, Mohr FW, Gummert JF. Twelve-month patency with the PAS-Port proximal connector device: a single center prospective randomized trial. Ann Thorac Surg. 2008;85:1579–85.

    Article  PubMed  Google Scholar 

  27. Borgermann J, Hakim K, Renner A, et al. Clampless off-pump versus conventional coronary artery revascularization: a propensity score analysis of 788 patients. Circulation. 2012;126:S176–82.

    Article  PubMed  Google Scholar 

  28. Gummert JF, Bossert T, Mohr FW. The use of an aortic connector system in a patient with severe calcified ascending aorta. J Card Surg. 2004;19:62–4.

    Article  PubMed  Google Scholar 

  29. Gummert JF, Demertzis S, Matschke K, et al. Six-month angiographic follow-up of the PAS-Port II clinical trial. Ann Thorac Surg. 2006;81:90–6.

    Article  PubMed  Google Scholar 

  30. Gummert JF, Diegeler A, Falk V. Anastomotic devices in coronary artery bypass grafting. Thorac Cardiovasc Surg. 2017;65:S179–82.

    Article  PubMed  Google Scholar 

  31. Bassano C, Bovio E, Uva F, et al. Partially anaortic clampless off-pump coronary artery bypass prevents neurologic injury compared to on-pump coronary surgery: a propensity score-matched study on 286 patients. Heart Vessel. 2016;31:1412–7.

    Article  Google Scholar 

  32. Matschke KE, Gummert JF, Demertzis S, et al. The Cardica C-Port system: clinical and angiographic evaluation of a new device for automated, compliant distal anastomoses in coronary artery bypass grafting surgery – a multicenter prospective clinical trial. J Thorac Cardiovasc Surg. 2005;130:1645–52.

    Article  PubMed  Google Scholar 

  33. Verberkmoes NJ, Wolters SL, Post JC, Soliman-Hamad MA, ter Woorst JF, Berreklouw E. Distal anastomotic patency of the Cardica C_PORT xA system vs the hand-sewn technique: a prospective randomized controlled study in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg. 2013;44:512–8.

    Article  PubMed  Google Scholar 

  34. Balkhy HH, Wann LS, Arnsdorf S. Early patency evaluation of new distal anastomotic device in internal mammary artery grafts using computed tomography angiography. Innovations (Phila). 2010;5:109–13.

    Article  Google Scholar 

  35. Balkhy HH, Wann LS, Krienbring D, Arnsdorf SE. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach: review of 120 cases. Ann Thorac Surg. 2011;92:821–8.

    Article  PubMed  Google Scholar 

  36. Hanggi D, Reinert M, Steiger HJ. C-Port Flex-A-assisted automated anastomosis for high-flow extracranial-intracranial bypass surgery in patients with symptomatic carotid artery occlusion: a feasibility study. J Neurosurg. 2009;111:181–7.

    Article  PubMed  Google Scholar 

  37. Argiriou M, Paralikas I, Anagnostakou V, Panagiotakopoulos V, Argiriou O, Charitos C. Creating arteriovenous fistula using an automatic anastomotic device. J Vasc Surg. 2011;53:521–33.

    Article  Google Scholar 

  38. Srivastava S, Gadasalli S, Agusala M, et al. Beating heart totally endoscopic coronary artery bypass. Ann Thorac Surg. 2010;89:1873–9.

    Article  PubMed  Google Scholar 

  39. Stecher D, van Slochteren FJ, Hoefer IE, et al. The nonocclusive laser-assisted coronary anastomotic connector in an off-pump porcine bypass model. J Thorac Cardiovasc Surg. 2014;147:1390–7.

    Article  PubMed  Google Scholar 

  40. Stecher D, Bronkers G, Hoefer IE, Pasterkamp G, Buijsrogge MP. Total arterial minimally invasive direct coronary artery bypass surgery facilitated by the trinity clip connector. Innovations (Phila). 2015;10:389–93.

    Article  Google Scholar 

  41. Stecher D, Bronkers G, Vink A, et al. A laser-assisted anastomotic technique. Feasibility on human diseased coronary arteries. Innovations (Phila). 2016;11:116–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirav C. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, N.C., Hemli, J.M. (2020). Anastomotic Devices for Coronary Artery Surgery. In: Raja, S. (eds) Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-24174-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24174-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24173-5

  • Online ISBN: 978-3-030-24174-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics