Skip to main content

Conduits for Coronary Artery Bypass Surgery

  • Chapter
  • First Online:
  • 409 Accesses

Abstract

Since its first introduction coronary artery bypass grafting (CABG) has become one of the mainstays in the treatment of ischemic heart disease. Both arterial and venous conduits as well as a variety of their combinations can be used. Long saphenous vein is the predominantly used venous conduit. Left internal thoracic artery (LITA), right internal thoracic artery (RITA), radial artery (RA), and right gastroepiploic artery (RGEA) are currently in use as arterial grafts. Pedicled or skeletonized harvesting techniques have been described for arterial conduits with the latter being recommended for ITAs. Minimally invasive endoscopic harvesting techniques can be applied to radial artery and long saphenous vein. The latter can also be harvested preserving the tissue surrounding the vessel (no-touch technique) as it is thought to improve patency rate. Biological augmentation or physical reinforcement of saphenous vein grafts (SVG) is also being proposed to improve patency. As far the grafting strategy is concerned, there is an established consensus on the use of arterial conduit on the left anterior descending coronary due to the well-established prognostic benefit. The choice of the second and further conduits for the remaining targets is still an area of debate due to the discrepancy in outcomes observed among randomized and large retrospective studies published in the literature. However, recent meta-analyses are pointing at the superiority of an arterial strategy in terms of long-term patency and outcomes. On the basis of the evidence currently available and on the basis of the long-term results of previous and new randomized controlled trials (RCTs), a multiple arterial grafting strategy should be the preferred approach in the majority of the patients and an ad hoc decisional algorithm has been recently suggested in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg. 2013;2:519–26.

    PubMed  PubMed Central  Google Scholar 

  2. Gaudino M, Antoniades C, Benedetto U, Deb S, Di Franco A, Di Giammarco G, et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation. 2017;136:1749–64.

    Article  PubMed  Google Scholar 

  3. Henriquez-Pino JA, Gomes WJ, Prates JC, Buffolo E. Surgical anatomy of the internal thoracic artery. Ann Thorac Surg. 1997;64:1041–5.

    Article  CAS  PubMed  Google Scholar 

  4. Dai C, Lu Z, Zhu H, Xue S, Lian F. Bilateral internal mammary artery grafting and risk of sternal wound infection: evidence from observational studies. Ann Thorac Surg. 2013;95:1938–45.

    Article  PubMed  Google Scholar 

  5. Deo SV, Shah IK, Dunlay SM, Erwin PJ, Locker C, Altarabsheh SE, et al. Bilateral internal thoracic artery harvest and deep sternal wound infection in diabetic patients. Ann Thorac Surg. 2013;95:862–9.

    Article  PubMed  Google Scholar 

  6. Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med. 1986;314:1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Gonzalez B, Reyes-Hernandez CG, Quiroga-Garza A, Rodriguez-Rodriguez VE, Esparza-Hernandez CN, Elizondo-Omana RE, et al. Conduits used in coronary artery bypass grafting: a review of morphological studies. Ann Thorac Cardiovasc Surg. 2017;23:55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tatoulis J, Buxton BF, Fuller JA. The right internal thoracic artery: is it underutilized? Curr Opin Cardiol. 2011;26:528–35.

    Article  PubMed  Google Scholar 

  9. Lopes RD, Mehta RH, Hafley GE, Williams JB, Mack MJ, Peterson ED, et al. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 2012;125:749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baikoussis NG, Papakonstantinou NA, Apostolakis E. Radial artery as graft for coronary artery bypass surgery: advantages and disadvantages for its usage focused on structural and biological characteristics. J Cardiol. 2014;63:321–8.

    Article  PubMed  Google Scholar 

  11. Gaudino M, Crea F, Cammertoni F, Mazza A, Toesca A, Massetti M. Technical issues in the use of the radial artery as a coronary artery bypass conduit. Ann Thorac Surg. 2014;98:2247–54.

    Article  PubMed  Google Scholar 

  12. Jarvis MA, Jarvis CL, Jones PR, Spyt TJ. Reliability of Allen’s test in selection of patients for radial artery harvest. Ann Thorac Surg. 2000;70:1362–5.

    Article  CAS  PubMed  Google Scholar 

  13. Carpentier A, Guermonprez JL, Deloche A, Frechette C, DuBost C. The aorta-to-coronary radial artery bypass graft. A technique avoiding pathological changes in grafts. Ann Thorac Surg. 1973;16:111–21.

    Article  CAS  PubMed  Google Scholar 

  14. Acar C, Jebara VA, Portoghese M, Beyssen B, Pagny JY, Grare P, et al. Revival of the radial artery for coronary artery bypass grafting. Ann Thorac Surg. 1992;54:652–9.

    Article  CAS  PubMed  Google Scholar 

  15. Myers MG, Fremes SE. Prevention of radial artery graft spasm: a survey of Canadian surgical centres. Can J Cardiol. 2003;19:677–81.

    PubMed  Google Scholar 

  16. Gaudino M, Prati F, Caradonna E, Trani C, Burzotta F, Schiavoni G, et al. Implantation in coronary circulation induces morphofunctional transformation of radial grafts from muscular to elastomuscular. Circulation. 2005;112(9 Suppl):I208–11.

    PubMed  Google Scholar 

  17. Patel A, Asopa S, Dunning J. Should patients receiving a radial artery conduit have post-operative calcium channel blockers? Interact Cardiovasc Thorac Surg. 2006;5:251–7.

    Article  PubMed  Google Scholar 

  18. Tatoulis J, Buxton BF, Fuller JA, Meswani M, Theodore S, Powar N, et al. Long-term patency of 1108 radial arterial-coronary angiograms over 10 years. Ann Thorac Surg. 2009;88:23–9.

    Article  PubMed  Google Scholar 

  19. Gaudino M, Tondi P, Benedetto U, Milazzo V, Flore R, Glieca F, et al. Radial artery as a coronary artery bypass conduit: 20-year results. J Am Coll Cardiol. 2016;68:603–10.

    Article  PubMed  Google Scholar 

  20. Amano A, Takahashi A, Hirose H. Skeletonized radial artery grafting: improved angiographic results. Ann Thorac Surg. 2002;73:1880–7.

    Article  PubMed  Google Scholar 

  21. Rukosujew A, Reichelt R, Fabricius AM, Drees G, Tjan TD, Rothenburger M, et al. Skeletonization versus pedicle preparation of the radial artery with and without the ultrasonic scalpel. Ann Thorac Surg. 2004;77:120–5.

    Article  PubMed  Google Scholar 

  22. Deb S, Cohen EA, Singh SK, Une D, Laupacis A, Fremes SE, et al. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (Radial Artery Patency Study). J Am Coll Cardiol. 2012;60:28–35.

    Article  PubMed  Google Scholar 

  23. Gaudino M, Alessandrini F, Pragliola C, Cellini C, Glieca F, Luciani N, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg. 2004;25:424–8.

    Article  PubMed  Google Scholar 

  24. Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD, et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N Engl J Med. 2018;378:2069–77.

    Article  PubMed  Google Scholar 

  25. Goldman S, Sethi GK, Holman W, Thai H, McFalls E, Ward HB, et al. Radial artery grafts vs saphenous vein grafts in coronary artery bypass surgery: a randomized trial. JAMA. 2011;305:167–74.

    Article  CAS  PubMed  Google Scholar 

  26. Collins P, Webb CM, Chong CF, Moat NE. Radial artery versus saphenous vein patency trial I. Radial artery versus saphenous vein patency randomized trial: five-year angiographic follow-up. Circulation. 2008;117:2859–64.

    Article  PubMed  Google Scholar 

  27. Hayward PA, Buxton BF. Mid-term results of the radial artery patency and clinical outcomes randomized trial. Ann Cardiothorac Surg. 2013;2:458–66.

    PubMed  PubMed Central  Google Scholar 

  28. Benedetto U, Angeloni E, Refice S, Sinatra R. Radial artery versus saphenous vein graft patency: meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg. 2010;139:229–31.

    Article  PubMed  Google Scholar 

  29. Athanasiou T, Saso S, Rao C, Vecht J, Grapsa J, Dunning J, et al. Radial artery versus saphenous vein conduits for coronary artery bypass surgery: forty years of competition—which conduit offers better patency? A systematic review and meta-analysis. Eur J Cardiothorac Surg. 2011;40:208–20.

    Article  PubMed  Google Scholar 

  30. Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC, et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg. 2013;146:255–61.

    Article  PubMed  Google Scholar 

  31. Zhang H, Wang ZW, Wu HB, Hu XP, Zhou Z, Xu P. Radial artery graft vs. saphenous vein graft for coronary artery bypass surgery: which conduit offers better efficacy? Herz. 2014;39:458–65.

    Article  CAS  PubMed  Google Scholar 

  32. Benedetto U, Raja SG, Albanese A, Amrani M, Biondi-Zoccai G, Frati G. Searching for the second best graft for coronary artery bypass surgery: a network meta-analysis of randomized controlled trials†. Eur J Cardiothorac Surg. 2015;47:59–65.

    Article  PubMed  Google Scholar 

  33. Hu X, Zhao Q. Systematic comparison of the effectiveness of radial artery and saphenous vein or right internal thoracic artery coronary bypass grafts in non-left anterior descending coronary arteries. J Zhejiang Univ Sci B. 2011;12:273–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoffman DM, Dimitrova KR, Lucido DJ, Dincheva GR, Geller CM, Balaram SK, et al. Optimal conduit for diabetic patients: propensity analysis of radial and right internal thoracic arteries. Ann Thorac Surg. 2014;98:30–6.

    Article  PubMed  Google Scholar 

  35. Tranbaugh RF, Dimitrova KR, Lucido DJ, Hoffman DM, Dincheva GR, Geller CM, et al. The second best arterial graft: a propensity analysis of the radial artery versus the free right internal thoracic artery to bypass the circumflex coronary artery. J Thorac Cardiovasc Surg. 2014;147:133–40.

    Article  PubMed  Google Scholar 

  36. van Son JA, Smedts F, Vincent JG, van Lier HJ, Kubat K. Comparative anatomic studies of various arterial conduits for myocardial revascularization. J Thorac Cardiovasc Surg. 1990;99:703–7.

    Article  PubMed  Google Scholar 

  37. Suma H. The right gastroepiploic artery graft for coronary artery bypass grafting: a 30-year experience. Korean J Thorac Cardiovasc Surg. 2016;49:225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pym J, Brown PM, Charrette EJ, Parker JO, West RO. Gastroepiploic-coronary anastomosis. A viable alternative bypass graft. J Thorac Cardiovasc Surg. 1987;94:256–9.

    Article  CAS  PubMed  Google Scholar 

  39. Suma H, Fukumoto H, Takeuchi A. Coronary artery bypass grafting by utilizing in situ right gastroepiploic artery: basic study and clinical application. Ann Thorac Surg. 1987;44:394–7.

    Article  CAS  PubMed  Google Scholar 

  40. Takayama T, Suma H, Wanibuchi Y, Tohda E, Matsunaka T, Yamashita S. Physiological and pharmacological responses of arterial graft flow after coronary artery bypass grafting measured with an implantable ultrasonic Doppler miniprobe. Circulation. 1992;86(5 Suppl):II217–23.

    CAS  PubMed  Google Scholar 

  41. Ochiai M, Ohno M, Taguchi J, Hara K, Suma H, Isshiki T, et al. Responses of human gastroepiploic arteries to vasoactive substances: comparison with responses of internal mammary arteries and saphenous veins. J Thorac Cardiovasc Surg. 1992;104:453–8.

    Article  CAS  PubMed  Google Scholar 

  42. Suma H, Takanashi R. Arteriosclerosis of the gastroepiploic and internal thoracic arteries. Ann Thorac Surg. 1990;50:413–6.

    Article  CAS  PubMed  Google Scholar 

  43. Saito T, Suma H, Terada Y, Wanibuchi Y, Fukuda S, Furuta S. Availability of the in situ right gastroepiploic artery for coronary artery bypass. Ann Thorac Surg. 1992;53:266–8.

    Article  CAS  PubMed  Google Scholar 

  44. Suma H, Wanibuchi Y, Furuta S, Takeuchi A. Does use of gastroepiploic artery graft increase surgical risk? J Thorac Cardiovasc Surg. 1991;101:121–5.

    Article  CAS  PubMed  Google Scholar 

  45. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e123–210.

    Article  PubMed  Google Scholar 

  46. Suzuki T, Asai T, Nota H, Kuroyanagi S, Kinoshita T, Takashima N, et al. Early and long-term patency of in situ skeletonized gastroepiploic artery after off-pump coronary artery bypass graft surgery. Ann Thorac Surg. 2013;96:90–5.

    Article  PubMed  Google Scholar 

  47. Suma H, Tanabe H, Takahashi A, Horii T, Isomura T, Hirose H, et al. Twenty years experience with the gastroepiploic artery graft for CABG. Circulation. 2007;116(11 Suppl):I188–91.

    PubMed  Google Scholar 

  48. Glineur D, D’Hoore W, Price J, Dormeus S, de Kerchove L, Dion R, et al. Survival benefit of multiple arterial grafting in a 25-year single-institutional experience: the importance of the third arterial graft. Eur J Cardiothorac Surg. 2012;42:284–90.

    Article  PubMed  Google Scholar 

  49. Suzuki T, Asai T, Matsubayashi K, Kambara A, Kinoshita T, Takashima N, et al. In off-pump surgery, skeletonized gastroepiploic artery is superior to saphenous vein in patients with bilateral internal thoracic arterial grafts. Ann Thorac Surg. 2011;91:1159–64.

    Article  PubMed  Google Scholar 

  50. Pevni D, Uretzky G, Yosef P, Yanay BG, Shapira I, Nesher N, et al. Revascularization of the right coronary artery in bilateral internal thoracic artery grafting. Ann Thorac Surg. 2005;79:564–9.

    Article  PubMed  Google Scholar 

  51. Hwang HY, Cho KR, Kim KB. Equivalency of right internal thoracic artery and right gastroepiploic artery composite grafts: five-year outcomes. Ann Thorac Surg. 2013;96:2061–8.

    Article  PubMed  Google Scholar 

  52. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–31.

    Article  CAS  PubMed  Google Scholar 

  53. Allaire E, Clowes AW. Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response. Ann Thorac Surg. 1997;63:582–91.

    Article  CAS  PubMed  Google Scholar 

  54. Spadaccio C, Nappi F, Al-Attar N, Coccia R, Perluigi M, Di Domenico F. Current developments in drug eluting devices: introductory editorial: drug-eluting stents or drug-eluting grafts? Insights from proteomic analysis. Drug Target Insights. 2016;10(Suppl 1):15–9.

    PubMed  Google Scholar 

  55. Hess CN, Lopes RD, Gibson CM, Hager R, Wojdyla DM, Englum BR, et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014;130:1445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Souza D. A new no-touch preparation technique. Technical notes. Scand J Thorac Cardiovasc Surg. 1996;30:41–4.

    Article  CAS  PubMed  Google Scholar 

  57. Verma S, Lovren F, Pan Y, Yanagawa B, Deb S, Karkhanis R, et al. Pedicled no-touch saphenous vein graft harvest limits vascular smooth muscle cell activation: the PATENT saphenous vein graft study. Eur J Cardiothorac Surg. 2014;45:717–25.

    Article  PubMed  Google Scholar 

  58. Dreifaldt M, Souza D, Bodin L, Shi-Wen X, Dooley A, Muddle J, et al. The vasa vasorum and associated endothelial nitric oxide synthase is more important for saphenous vein than arterial bypass grafts. Angiology. 2013;64:293–9.

    Article  CAS  PubMed  Google Scholar 

  59. Samano N, Geijer H, Liden M, Fremes S, Bodin L, Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: a randomized trial. J Thorac Cardiovasc Surg. 2015;150:880–8.

    Article  PubMed  Google Scholar 

  60. Kopjar T, Dashwood MR. Endoscopic versus “no-touch” saphenous vein harvesting for coronary artery bypass grafting: a trade-off between wound healing and graft patency. Angiology. 2016;67:121–32.

    Article  CAS  PubMed  Google Scholar 

  61. van Diepen S, Brennan JM, Hafley GE, Reyes EM, Allen KB, Ferguson TB, et al. Endoscopic harvesting device type and outcomes in patients undergoing coronary artery bypass surgery. Ann Surg. 2014;260:402–8.

    Article  PubMed  Google Scholar 

  62. Sastry P, Rivinius R, Harvey R, Parker RA, Rahm AK, Thomas D, et al. The influence of endoscopic vein harvesting on outcomes after coronary bypass grafting: a meta-analysis of 267,525 patients. Eur J Cardiothorac Surg. 2013;44:980–9.

    Article  PubMed  Google Scholar 

  63. Lopes RD, Hafley GE, Allen KB, Ferguson TB, Peterson ED, Harrington RA, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. N Engl J Med. 2009;361:235–44.

    Article  CAS  PubMed  Google Scholar 

  64. Rousou LJ, Taylor KB, Lu XG, Healey N, Crittenden MD, Khuri SF, et al. Saphenous vein conduits harvested by endoscopic technique exhibit structural and functional damage. Ann Thorac Surg. 2009;87:62–70.

    Article  PubMed  Google Scholar 

  65. Deppe AC, Liakopoulos OJ, Choi YH, Slottosch I, Kuhn EW, Scherner M, et al. Endoscopic vein harvesting for coronary artery bypass grafting: a systematic review with meta-analysis of 27,789 patients. J Surg Res. 2013;180:114–24.

    Article  PubMed  Google Scholar 

  66. Williams JB, Peterson ED, Brennan JM, Sedrakyan A, Tavris D, Alexander JH, et al. Association between endoscopic vs open vein-graft harvesting and mortality, wound complications, and cardiovascular events in patients undergoing CABG surgery. JAMA. 2012;308:475–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361:1827–37.

    Article  CAS  PubMed  Google Scholar 

  68. Hwang HY, Kim JS, Oh SJ, Kim KB. A randomized comparison of the saphenous vein versus right internal thoracic artery as a Y-composite graft (SAVE RITA) trial: early results. J Thorac Cardiovasc Surg. 2012;144:1027–33.

    Article  PubMed  Google Scholar 

  69. Tedoriya T, Kawasuji M, Sakakibara N, Ueyama K, Watanabe Y. Pressure characteristics in arterial grafts for coronary bypass surgery. Cardiovasc Surg. 1995;3:381–5.

    Article  CAS  PubMed  Google Scholar 

  70. Kim KB, Hwang HY, Hahn S, Kim JS, Oh SJ. A randomized comparison of the saphenous vein versus right internal thoracic artery as a Y-composite graft (SAVE RITA) trial: one-year angiographic results and mid-term clinical outcomes. J Thorac Cardiovasc Surg. 2014;148:901–7.

    Article  PubMed  Google Scholar 

  71. Gaudino M, Fremes SE. The SAVE RITA trial at 5 years: more evidence is needed to transform a vein to an artery. J Thorac Cardiovasc Surg. 2018;156:1434–5.

    Article  PubMed  Google Scholar 

  72. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson TB Jr, Lorenz TJ, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294:2446–54.

    Article  PubMed  Google Scholar 

  73. Mawhinney JA, Mounsey CA, Taggart DP. The potential role of external venous supports in coronary artery bypass graft surgery. Eur J Cardiothorac Surg. 2018;53:1127–34.

    Article  PubMed  Google Scholar 

  74. Inderbitzin DT, Bremerich J, Matt P, Grapow MT, Eckstein FS, Reuthebuch O. One-year patency control and risk analysis of eSVS(R)-mesh-supported coronary saphenous vein grafts. J Cardiothorac Surg. 2015;10:108.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Taggart DP, Amin S, Djordjevic J, Oikonomou EK, Thomas S, Kampoli AM, et al. A prospective study of external stenting of saphenous vein grafts to the right coronary artery: the VEST II study. Eur J Cardiothorac Surg. 2017;51:952–8.

    Article  PubMed  Google Scholar 

  76. Amin S, Werner RS, Madsen PL, Krasopoulos G, Taggart DP. Influence of external stenting on venous graft flow parameters in coronary artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg. 2018;26:926–31.

    Article  PubMed  Google Scholar 

  77. Gaudino M, Alexander JH, Bakaeen FG, Ballman K, Barili F, Calafiore AM, et al. Randomized comparison of the clinical outcome of single versus multiple arterial grafts: the ROMA trial-rationale and study protocol. Eur J Cardiothorac Surg. 2017;52:1031–40.

    Article  PubMed  Google Scholar 

  78. Gaudino M, Taggart D, Suma H, Puskas JD, Crea F, Massetti M. The choice of conduits in coronary artery bypass surgery. J Am Coll Cardiol. 2015;66:1729–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario F. L. Gaudino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spadaccio, C., Gaudino, M.F.L. (2020). Conduits for Coronary Artery Bypass Surgery. In: Raja, S. (eds) Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-24174-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24174-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24173-5

  • Online ISBN: 978-3-030-24174-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics