Skip to main content

Myocardial Protection in Adults

  • Chapter
  • First Online:
Cardiac Surgery

Abstract

The use of cardioplegia solution has resulted in substantial improvements in safety and efficacy of cardiac surgery procedures. Its main aims are to protect the myocardium by inducing a cardioplegic diastolic arrest, reducing myocardial energy wasting, preventing cellular damage during the ischemia period and minimizing reperfusion injury after restoration of blood flow in the coronary arteries. This chapter provides an overview of the scientific evidence about cardioplegia as well as describes the daily practice of myocardial protection during cardiac operations. The basic principles of myocardial ischemia and reperfusion injury and how they impact on myocardial protection are discussed. Different types of cardioplegic methods, composition of cardioplegic solutions, strategies and timing of cardioplegic delivery along with adjuncts for cardioplegic solutions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmunds LH. Cardiopulmonary bypass after 50 years. N Engl J Med. 2004;351:1603–6.

    Article  CAS  PubMed  Google Scholar 

  2. Daly RC, Dearani JA, McGregor CG, et al. Fifty years of open heart surgery at the Mayo Clinic. Mayo Clin Proc. 2005;80:636–40.

    Article  PubMed  Google Scholar 

  3. Baufreton C, Corbeau JJ, Pinaud F. Inflammatory response and haematological disorders in cardiac surgery: toward a more physiological cardiopulmonary bypass. Ann Fr Anesth Reanim. 2006;25:510–20.

    Article  CAS  PubMed  Google Scholar 

  4. Clermont G, Vergely C, Jazayeri S, et al. Systemic free radical activation is a major event involved in myocardial oxidative stress related to cardiopulmonary bypass. Anesthesiology. 2002;96:80–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tavares-Murta BM, Cordeiro AO, Murta EF, Cunha Fde Q, Bisinotto FM. Effect of myocardial protection and perfusion temperature on production of cytokines and nitric oxide during cardiopulmonary bypass. Acta Cir Bras. 2007;22:243–50.

    Article  PubMed  Google Scholar 

  6. Berg K, Haaverstad R, Astudillo R, et al. Oxidative stress during coronary artery bypass operations: Importance of surgical trauma and drug treatment. Scand Cardiovasc J. 2006;40:291–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hearse DJ. Myocardial protection during open heart surgery: pre-ischemic, ischemic and post-ischemic considerations. In: Caldarera CM, Editrice HP, editors. Advances in studies on heart metabolism. Bologna: CLUEB; 1982. p. 329–44.

    Google Scholar 

  8. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth. 2003;91:551–65.

    Article  CAS  PubMed  Google Scholar 

  10. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci. 2005;1047:248–58.

    Article  CAS  PubMed  Google Scholar 

  11. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: An investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132:849–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Melrose DG, Dieger DB, Bentall HH, Belzer FO. Elective cardiac arrest: preliminary communications. Lancet. 1955;2:21–2.

    Article  Google Scholar 

  13. Gaillard D, Bical O, Paumier D, Trivin F. A review of myocardial normothermia: Its theoretical basis and the potential clinical benefits in cardiac surgery. Cardiovasc Surg. 2000;8:198–203.

    Article  CAS  PubMed  Google Scholar 

  14. Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg. 1977;73:87–94.

    Article  CAS  PubMed  Google Scholar 

  15. Landymore RW, Marble AE. Effect of hypothermia and cardioplegia on intramyocardial voltage and myocardial oxygen consumption. Can J Surg. 1990;33:45–8.

    CAS  PubMed  Google Scholar 

  16. Badak MI, Gurcun U, Discigil B, Boga M, Ozkisacik EA, Alayunt EA. Myocardium utilizes more oxygen and glucose during tepid blood cardioplegic infusion in arrested heart. Int Heart J. 2005;46:219–29.

    Article  PubMed  Google Scholar 

  17. Kuniyoshi Y, Koja K, Miyagi K, Shimoji M, Uezu T, Yamashiro S, et al. Myocardial protective effect of hypothermia during extracorporeal circulation – By quantitative measurement of myocardial oxygen consumption. Ann Thorac Cardiovasc Surg. 2003;9:155–62.

    PubMed  Google Scholar 

  18. Hearse DJ, Stewart DA, Braimbridge MV. The additive protective effects of hypothermia and chemical cardioplegia during ischemic cardiac arrest in the rat. J Thorac Cardiovasc Surg. 1980;79:39–43.

    Article  CAS  PubMed  Google Scholar 

  19. Grigore AM, Mathew J, Grocott HP, Reves JG, Blumenthal JA, White WD, et al. Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery. Anesthesiology. 2001;95:1110–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dobbs WA, Engelman RM, Rousou JH, Pels MA, Alvarez JM. Residual metabolism of the hypothermic-arrested pig heart. J Surg Res. 1981;31:319–23.

    Article  CAS  PubMed  Google Scholar 

  21. Lyons J, Raison J. A temperature-induced transition in mitochondrial oxidation: Contrasts between cold and warm blooded animals. Comp Biochem Physiol. 1970;37:405–11.

    Article  CAS  Google Scholar 

  22. Reissmann K, VanCitters R. Oxygen consumption and mechanical efficiency of the hypothermic heart. J Appl Phys. 1956;9:427–32.

    CAS  Google Scholar 

  23. Teoh KH, Christakis GT, Weisel RD, et al. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia. J Thorac Cardiovasc Surg. 1986;91:888–95.

    Article  CAS  PubMed  Google Scholar 

  24. Morita K, Ihnken K, Buckberg GD, Sherman MP, Young HH. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. IX. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis. J Thorac Cardiovasc Surg. 1995;110(4 Pt 2):1235–44.

    Article  CAS  PubMed  Google Scholar 

  25. Magovern GJ Jr, Flaherty JT, Gott VL, Bulkley BH, Gardner TJ. Failure of blood cardioplegia to protect myocardium at lower temperatures. Circulation. 1982;66(2 Pt 2):I60–7.

    PubMed  Google Scholar 

  26. Jacob S, Kallikourdis A, Sellke F, Dunning J. Is blood cardioplegia superior to crystalloid cardioplegia? Interact Cardiovasc Thorac Surg. 2008;7:491–8.

    Article  PubMed  Google Scholar 

  27. Yeh CH, Wang YC, Wu YC, Chu JJ, Lin PJ. Continuous tepid blood cardioplegia can preserve coronary endothelium and ameliorate the occurrence of cardiomyocyte apoptosis. Chest. 2003;123:1647–54.

    Article  PubMed  Google Scholar 

  28. Velez DA, Morris CD, Budde JM, Muraki S, Otto RN, Guyton RA, et al. All-blood (miniplegia) versus dilute cardioplegia in experimental surgical revascularization of evolving infarction. Circulation. 2001;104(12 Suppl 1):I296–302.

    Article  CAS  PubMed  Google Scholar 

  29. Landymore RW, Marble AE, Eng P, MacAulay MA, Fris J. Myocardial oxygen consumption and lactate production during antegrade warm blood cardioplegia. Eur J Cardiothorac Surg. 1992;6:372–6.

    Article  CAS  PubMed  Google Scholar 

  30. Lichtenstein SV, el Dalati H, Panos A, Slutsky AS. Long cross-clamp time with warm heart surgery. Lancet. 1989;1:1443.

    Article  CAS  PubMed  Google Scholar 

  31. Lichtenstein SV, Ashe KA, el Dalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg. 1991;101:269–74.

    Article  CAS  PubMed  Google Scholar 

  32. Nesher N, Zisman E, Wolf T, et al. Strict thermoregulation attenuates myocardial injury during coronary artery bypass graft surgery as reflected by reduced levels of cardiac-specific troponin I. Anesth Analg. 2003;96:328–35.

    CAS  PubMed  Google Scholar 

  33. Daniel S. Review on the multifactorial aspects of bioincompatibility in CPB. Perfusion. 1996;11:246–55.

    Article  CAS  PubMed  Google Scholar 

  34. Kavanagh BP, Mazer CD, Panos A, Lichtenstein SV. Effect of warm heart surgery on perioperative management of patients undergoing urgent cardiac surgery. J Cardiothorac Vasc Anesth. 1992;6:127–31.

    Article  CAS  PubMed  Google Scholar 

  35. Landymore RW, Marble AE, Fris J. Effect of intermittent delivery of warm blood cardioplegia on myocardial recovery. Ann Thorac Surg. 1994;57:1267–72.

    Article  CAS  PubMed  Google Scholar 

  36. Isomura T, Hisatomi K, Sato T, Hayashida N, Ohishi K. Interrupted warm blood cardioplegia for coronary artery bypass grafting. Eur J Cardiothorac Surg. 1995;9:133–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hayashida N, Isomura T, Sato T, Maruyama H, Higashi T, Arinaga K, et al. Minimally diluted tepid blood cardioplegia. Ann Thorac Surg. 1998;65:615–21.

    Article  CAS  PubMed  Google Scholar 

  38. Guyton RA, Gott JP, Brown WM, Craver JM. Cold and warm myocardial protection techniques. Adv Card Surg. 1996;7:1–29.

    CAS  PubMed  Google Scholar 

  39. Hayashida N, Weisel RD, Shirai T, et al. Tepid antegrade and retrograde cardioplegia. Ann Thorac Surg. 1995;59:723–9.

    Article  CAS  PubMed  Google Scholar 

  40. Menasché P, Subayi JB, Veyssié L, le Dref O, Chevret S, Piwnica A. Efficacy of coronary sinus cardioplegia in patients with complete coronary artery occlusions. Ann Thorac Surg. 1991;51:418–23.

    Article  PubMed  Google Scholar 

  41. Crooke GA, Harris LH, Grossi EA, Baumann FG, Galloway AC, Colvin SB. Biventricular distribution of cold blood cardioplegic solution administered by different retrograde techniques. J Thorac Cardiovasc Surg. 1991;102:631–8.

    CAS  PubMed  Google Scholar 

  42. Bezon E, Choplain JN, Khalifa AA, Numa H, Salley N, Barra JA. Continuous retrograde blood cardioplegia ensures prolonged aortic cross-clamping time without increasing the operative risk. Interact Cardiovasc Thorac Surg. 2006;5:403–7.

    Article  PubMed  Google Scholar 

  43. Gebhard MM, Preusse CJ, Schnabel PA, Bretschneider HJ. Different effects of cardioplegic solution HTK during single or intermittent administration. Thorac Cardiovasc Surg. 1984;32:271–6.

    Article  CAS  PubMed  Google Scholar 

  44. Bretschneider HJ. Myocardial protection. Thorac Cardiovasc Surg. 1980;28:295–302.

    Article  CAS  PubMed  Google Scholar 

  45. Bretschneider HJ, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG. Myocardial resistance and tolerance to ischemia: physiological and biochemical basis. J Cardiovasc Surg. 1975;16:241–60.

    CAS  Google Scholar 

  46. Jin XY, Gibson DG, Pepper JR. Early changes in regional and global left ventricular function after aortic valve replacement. Comparison of crystalloid, cold blood, and warm blood cardioplegias. Circulation. 1995;92(9 Suppl):II155–62.

    Article  CAS  PubMed  Google Scholar 

  47. Braathen B, Tonnessen T. Cold blood cardioplegia reduces the increase in cardiac enzyme levels compared with cold crystalloid cardioplegia in patients undergoing aortic valve replacement for isolated aortic stenosis. J Thorac Cardiovasc Surg. 2010;139:874–80.

    Article  CAS  PubMed  Google Scholar 

  48. Calafiore AM, Teodori G, Mezzetti A, et al. Intermittent Antegrade Warm Blood Cardioplegia. Ann Thorac Surg. 1995;59:398–402.

    Article  CAS  PubMed  Google Scholar 

  49. Salerno TA, Houck JP, Barrozo CAM, et al. Retrograde continuous warm blood cardioplegia: a new concept in myocardial protection. Ann Thorac Surg. 1991;51:245–7.

    Article  CAS  PubMed  Google Scholar 

  50. Salerno TA, Charrette EJP, Chiong MA. Is cardioplegic re-arrest safe? Can J Surg. 1981;24:483–4.

    CAS  PubMed  Google Scholar 

  51. Lichtenstein SV, Ashe KA, elDalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg. 1991;101:269–74.

    Article  CAS  PubMed  Google Scholar 

  52. Standeven JW, Jellinek M, Menz LJ, Kolata RJ, Barner HB. Cold blood potassium diltiazem cardioplegia. J Thorac Cardiovasc Surg. 1984;87:201–12.

    Article  CAS  PubMed  Google Scholar 

  53. Duan L, Zhang C, Luo W, Gao Y, Chen R, Hu G. Does magnesium-supplemented cardioplegia reduce cardiac injury? A meta-analysis of randomized controlled trials. J Card Surg. 2015;30:338–45.

    Article  PubMed  Google Scholar 

  54. Poveda-Jaramillo R, Monaco F, Zangrillo A, Landoni G. Ultra-short–acting β-blockers (Esmolol and Landiolol) in the perioperative period and in critically ill patients. J Cardiothorac Vasc Anesth. 2018;32:1415–25.

    Article  CAS  PubMed  Google Scholar 

  55. Fiore AC, Naunheim KS, Taub J, et al. Myocardial preservation using lidocaine blood cardioplegia. Ann Thorac Surg. 1990;50:771–5.

    Article  CAS  PubMed  Google Scholar 

  56. Guerrero-Orriach JL, Escalona Belmonte JJ, Ramirez Fernandez A, Ramirez Aliaga M, Rubio Navarro M, Cruz MJ. Cardioprotection with halogenated gases: how does it occur? Drug Des Devel Ther. 2017;11:837–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Lin PJ. Cardioplegia-induced cardiac arrest under cardiopulmonary bypass decreased nitric oxide production which induced cardiomyocytic apoptosis via nuclear factor kappa B activation. Shock. 2007;27:422–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zeng J, He W, Qu Z, Tang Y, Zhou Q, Zhang B. Cold blood versus crystalloid cardioplegia for myocardial protection in adult cardiac surgery: A meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth. 2014;28:674–81.

    Article  PubMed  Google Scholar 

  59. Moghimian M, Faghihi M, Karimian SM, Imani A, Houshmand F, Azizi Y. Role of central oxytocin in stress-induced cardioprotection in ischemic-reperfused heart model. J Cardiol. 2013;61:79–86.

    Article  PubMed  Google Scholar 

  60. Wu ZK, Laurikka J, Saraste A, Kytö V, Pehkonen EJ, Savunen T, et al. Cardiomyocyte apoptosis and ischemic preconditioning in open heart operations. Ann Thorac Surg. 2003;76:528–34.

    Article  PubMed  Google Scholar 

  61. Ghosh S, Galiñanes M. Protection of the human heart with ischemic preconditioning during cardiac surgery: role of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2003;126:133–42.

    Article  PubMed  Google Scholar 

  62. Perrault LP, Menasché P, Bel A, et al. Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg. 1996;112:1378–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Lois Clegg, English Language Teacher, University of Parma, for her assistance in the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nicolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicolini, F., Gherli, T. (2020). Myocardial Protection in Adults. In: Raja, S. (eds) Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-24174-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24174-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24173-5

  • Online ISBN: 978-3-030-24174-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics