Skip to main content

Excitons Under the Influence of External or Internal Fields

  • Chapter
  • First Online:
  • 2184 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Application of external fields is a well suited strategy to reveal the properties of excitons in semiconductors. It further leads to new phenomena which are interesting for device applications. The external field can be applied temporally constant [79E1, 85H1] or as systematic perturbation in modulation techniques [69C1, 73S1, 04G1]. We will restrict our discussion here to the presentation of general features and of some selected topics and examples. We consider the influence of magnetic, electric and strain fields on the optical properties of excitons including their continuum states and we proceed again from bulk materials to structures of lower quasi-dimensionality. Mostly these fields are applied from outside, but there are also cases of internal fields, e.g., strain fields due to lattice misfit in epitaxy or piezo-electric fields resulting from such strain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.J. Hopfield, J. Phys. Chem. Solid 15, 97 (1960)

    Article  ADS  Google Scholar 

  2. D.G. Thomas, J.J. Hopfield, Phys. Rev. 124, 657 (1961)

    Article  ADS  Google Scholar 

  3. M.D. Sturge, Phys. Rev. 127, 768 (1962)

    Article  ADS  Google Scholar 

  4. E. Gutsche, H. Lange, Phys. Status Solidi (b) 22, 229 (1967)

    Article  ADS  Google Scholar 

  5. Chr. Solbrig, Z. Phys. A 211, 429 (1968)

    Google Scholar 

  6. M. Cardona, Modulation Spectroscopy (Academic, New York, 1969)

    Google Scholar 

  7. C. Gahwiller, G. Harbeke, Phys. Rev. 185, 1147 (1969)

    Article  ADS  Google Scholar 

  8. N. Hase, M. Onuka, J. Phys. Soc. Jpn. 28, 965 (1970)

    Article  ADS  Google Scholar 

  9. D.W. Langer et al., Phys. Rev. B 2, 4005 (1970)

    Article  ADS  Google Scholar 

  10. E. Mohler, Phys. Status Solidi 38, 81 (1970)

    Article  Google Scholar 

  11. H. Lange, Phys. Status Solidi (b) 48, 791 (1971)

    Article  ADS  Google Scholar 

  12. O.W. Madelung, E. Mollow, Z. Phys. A 249, 12 (1971)

    Article  Google Scholar 

  13. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971)

    Google Scholar 

  14. O. Goede et al., Phys. Status Solidi B 53, 235 (1972)

    Article  ADS  Google Scholar 

  15. D.E. Aspnes, A.A. Studna, Phys. Rev. B 7, 4605 (1973)

    Article  ADS  Google Scholar 

  16. B.A. Bobylev, A.F. Kravchenko, A.S. Terekhov, Sov. Phys. Semicond. 6, 1635 (1973)

    Google Scholar 

  17. K. Hümmer, Phys. Status Solidi (b) 56, 249 (1973)

    Article  ADS  Google Scholar 

  18. B.S. Razbirin, I.N. Uraltsev, A.A. Bogdanov, Sov. Phys. Solid State 15, 604 (1973)

    Google Scholar 

  19. B.O. Seraphin (ed.), Modulation Spectroscopy (North-Holland, Amsterdam, 1973)

    Google Scholar 

  20. S. Suga, T. Koda, T. Mitani, Phys. Status Solidi b 55, 355 (1973)

    Article  ADS  Google Scholar 

  21. J.U. Fischbach et al., Phys. Status Solidi B 66, 253 (1974)

    Article  ADS  Google Scholar 

  22. G. Ottaviani et al., Solid State Commun. 14, 933 (1974)

    Article  ADS  Google Scholar 

  23. B.G. Yacobi, Y. Brada, Phys. Rev. B 10, 665 (1974)

    Article  ADS  Google Scholar 

  24. K. Cho et al., Phys. Rev. B 11, 1512 (1975); ibid. B 12, 1608 (1975)

    Google Scholar 

  25. W. Buckel, U. Birkholz, K. Ziegler, Phys. Status Solidi (b) 78, K23 (1976)

    Article  ADS  Google Scholar 

  26. Y. Hamakawa, T. Nishino, in Optical Properties of Solids, New Developments, ed. by B.O. Seraphim (North-Holland, Amsterdam, 1976), p. 255

    Google Scholar 

  27. H. Venghaus, S. Suga, K. Cho, Phys. Rev. B 16, 4419 (1977)

    Article  ADS  Google Scholar 

  28. J.A. Gaj et al., Solid State Commun. 25, 193 (1978); ibid. 29, 435 (1979)

    Google Scholar 

  29. B.S. Razbirin et al., JETP Lett. 27, 341 (1978)

    ADS  Google Scholar 

  30. K. Cho (ed.), Excitons. Topics in Current Physics, vol. 14 (Springer, Berlin, 1979)

    Google Scholar 

  31. R. Ranvaud et al., Phys. Rev. B 20, 701 (1979)

    Article  ADS  Google Scholar 

  32. H.-R. Trebin, U. Rössler, R. Ranvaud, Phys. Rev. B 20, 686 (1979)

    Article  ADS  Google Scholar 

  33. S. Suga et al., Phys. Rev. B 22, 4931 (1980)

    Article  ADS  Google Scholar 

  34. G. Blattner et al., Phys. Status Solidi (b) 107, 105 (1981)

    Article  ADS  Google Scholar 

  35. G. Blattner et al., Phys. Rev. B 25, 7413 (1982)

    Article  ADS  Google Scholar 

  36. H.W. Hölscher, A. Nöthe, Ch. Uihlein, Phys. B+C 117/118, 2379 (1982)

    Google Scholar 

  37. C. Klingshirn, in Application of High Magnetic Fields in Semiconductor Physics, ed. by G. Landwehr. Lecture Notes in Physics, vol. 177 (Springer, Berlin, 1982), p. 214

    Google Scholar 

  38. G. Landwehr (ed.), Application of High Magnetic Fields in Semiconductor Physics. Lecture Notes in Physics, vol. 177 (Springer, Berlin, 1982)

    Google Scholar 

  39. O. Madelung, U. Rössler (ed.), Landolt–Börnstein. New Series, Group III, vol. 17a to i, 22a and b, 41A to D (Springer, Berlin, 1982–2001)

    Google Scholar 

  40. Y.R. Lee, A.K. Romdas, Solid State Commun. 51, 861 (1984)

    Article  ADS  Google Scholar 

  41. L. Schultheis, J. Lagois, Phys. Rev. B 29, 6784 (1984)

    Article  ADS  Google Scholar 

  42. B. Hönerlage et al., Phys. Rep. 124, 161 (1985)

    Article  ADS  Google Scholar 

  43. D.A.B. Miller et al., Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  44. R. People, J.C. Bean, Appl. Phys. Lett. 47, 322 (1985)

    Article  ADS  Google Scholar 

  45. L. Schultheis, C.W. Tu, Phys. Rev. B 32, 6978 (1985)

    Article  ADS  Google Scholar 

  46. J.A. Brum, G. Bastard, M. Voos, Solid State Commun. 59, 561 (1986)

    Article  ADS  Google Scholar 

  47. F. Beerwerth, D. Fröhlich, Phys. Rev. Lett. 57, 1344 (1986)

    Article  ADS  Google Scholar 

  48. J. Gutowski, Solid State Commun. 58, 523 (1986)

    Article  ADS  Google Scholar 

  49. D.A.B. Miller, D.S. Chemla, S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986)

    Article  ADS  Google Scholar 

  50. I. Bar-Joseph et al., Appl. Phys. Lett. 50, 1010 (1987)

    Article  ADS  Google Scholar 

  51. B.W. Dodson, J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987)

    Article  ADS  Google Scholar 

  52. J.A. Gaj, in Semiconductors and Semimetals, vol. 25, ed. by J.K. Furdyna, J. Kossut (Academic, New York, 1988), p. 275

    Google Scholar 

  53. O. Goede, W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988)

    Article  ADS  Google Scholar 

  54. D.A.B. Miller, D.S. Chemla, S. Schmitt-Rink, Appl. Phys. Lett. 52, 2154 (1988)

    Article  ADS  Google Scholar 

  55. J.K. Furdyna, J. Kossut (eds.), Semiconductors and Semimetals, vol. 25. Growth and Optical Properties of Wide Gap II-VI Low Dimensional Semiconductors (Academic, New York, 1988)

    Google Scholar 

  56. J. Gutowski, NATO ASI Series B, vol. 200 (Plenum, New York, 1989), p. 139

    Google Scholar 

  57. O‘Reilly, Semicond. Sci. Technol. 4, 121 (1989)

    Article  ADS  Google Scholar 

  58. A.I. Ekimov et al., J. Lumin. 46, 83 (1990)

    Article  Google Scholar 

  59. M. Holtz et al., Phys. Rev. B 41, 3641 (1990)

    Article  ADS  Google Scholar 

  60. M.A. Jackobson et al., Phys. Status Solidi (b) 161, 395 (1990)

    Article  ADS  Google Scholar 

  61. D.S. Chemla, in Highlights in Condensed Matter Physics and Future Prospects, ed. by L. Esaki (Plenum Press, New York, 1991), p. 293

    Chapter  Google Scholar 

  62. L. Esaki, in Highlights in Condensed Matter Physics and Future Prospects, ed. by L. Esaki (Plenum Press, New York, 1991), p. 55

    Chapter  Google Scholar 

  63. H. Gießen, Diploma thesis, Universität Kaiserslautern (1991)

    Google Scholar 

  64. B.T. Jonker et al., J. Appl. Phys. 69, 6097 (1991)

    Article  ADS  Google Scholar 

  65. J. Nunnenkamp et al., Phys. Rev. B 44, 8129 (1991)

    Article  ADS  Google Scholar 

  66. M.v. Ortenberg, Festkörperprobleme/Adv. Solid State Phys. 31, 261 (1991)

    Google Scholar 

  67. K. Reimann et al., Phys. Rev. B 44, 2985 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  68. S. Schmitt-Rink, Festkörperprobleme/Adv. Solid State Phys. 31, 243 (1992)

    Google Scholar 

  69. L.V. Butov, Phys. Rev. B 46, 12765, 13627 and 15156 (1992)

    Article  ADS  Google Scholar 

  70. W. Gebhardt, Mater. Sci. Eng. B 11, 1 (1992)

    Article  Google Scholar 

  71. O. Goede, W. Heimbrodt, Festkörperprobleme/Adv. Solid State Phys. 32, 237 (1992)

    Google Scholar 

  72. E.L. Ivchenko, A.A. Kiselev, Sov. Phys. Semicond. 26, 827 (1992)

    Google Scholar 

  73. T. Rappen, G. Mohs, M. Wegener, Phys. Status Solidi (b) 173, 77 (1992)

    Article  ADS  Google Scholar 

  74. H.P. Wagner, H. Leiderer, Festkörperprobleme/Adv. Solid State Phys. 32, 221 (1992)

    Google Scholar 

  75. H.P. Wagner et al., J. Lumin. 52, 41 (1992)

    Article  Google Scholar 

  76. D.R. Yakovlev, Festkörperprobleme/Adv. Solid State Phys. 32, 237 (1992)

    Google Scholar 

  77. E.E. Mendez, in Optics of Semiconductor Nanostructures, ed. by F. Henneberger, S. Schmitt-Rink, E.O. Göbel (Academic, Berlin, 1993), p. 181

    Google Scholar 

  78. U. Efron, G. Livescu, in Spatial Light Modulator Mater Devices and Technology, ed. by U. Efron (M. Dekker Inc., New York, 1994), p. 217

    Google Scholar 

  79. J.K. Furdyna, Solid State Electron. 37, 1065 (1994)

    Article  ADS  Google Scholar 

  80. J.A. Gaj et al., Phys. Rev. B 50, 5512 (1994)

    Article  ADS  Google Scholar 

  81. M. Yamaguchi et al., Solid State Electron. 37, 839 (1994)

    Article  ADS  Google Scholar 

  82. L.V. Butov et al., Phys. Rev. B 52, 12153 (1995)

    Article  ADS  Google Scholar 

  83. R.M. Hannak et al., Solid State Commun. 93, 313 (1995)

    Article  ADS  Google Scholar 

  84. D. Liu, MS thesis, Boston College (1995)

    Google Scholar 

  85. H. Heinrich, J.B. Mullin (eds.), Mater. Sci. Forum 182–184 (1995)

    Google Scholar 

  86. U. Siegner et al., Phys. Status Solidi (b) 188, 361 (1995); Phys. Rev. B 51, 495 (1995)

    Google Scholar 

  87. B. Gil, F. Hamdani, H. Morkoç, Phys. Rev. B 54, 7678 (1996)

    Article  ADS  Google Scholar 

  88. I.V. Kukushkin, V.B. Timofeev, Adv. Phys. 45, 147 (1996)

    Article  ADS  Google Scholar 

  89. M. Oestreich, S. Hallstein, S. Rühle, IEEE J. Sel. Top. Quantum Electron. 2, 747 (1996)

    Google Scholar 

  90. D.R. Yakovlev, Comment Condens. Matter Phys. 18, 51 (1996)

    Google Scholar 

  91. S. Bar-Ad, Phys. Rev. Lett. 78, 1363 (1997)

    Article  ADS  Google Scholar 

  92. M. Hetterich et al., Phys. Rev. B 56, 12396 (1997)

    Article  Google Scholar 

  93. S. Kim et al., Phys. Rev. B 55, 7130 (1997)

    Article  ADS  Google Scholar 

  94. P. Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997)

    Article  ADS  Google Scholar 

  95. G. Landwehr, W. Ossau (eds.), Proceedings of 12 International Conference on High Magnetic Fields in Semiconductors, vols. 1 and 2 (World Scientific, Singapore, 1997)

    Google Scholar 

  96. N.J. Traynor, R.J. Warburton, M.J. Snelling, R.T. Harley, Phys. Rev. B 55, 15701 (1997)

    Article  ADS  Google Scholar 

  97. A.A. Sirenko in Proceedings of 12 International Conference on High Magnetic Fields in Semiconductors, vol. 2, ed. by G. Landwehr, W. Ossau (World Scientific, Singapore, 1997), p. 561

    Google Scholar 

  98. W. Heller, U. Bockelmann, G. Abstreiter, Phys. Rev. B 57, 6270 (1998)

    Article  ADS  Google Scholar 

  99. S.K. Lyo, Phys. Rev. B 58, R10187 (1998)

    Article  ADS  Google Scholar 

  100. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  101. O. Ambacher et al., Phys. Status Solidi B 216, 381 (1999)

    Article  ADS  Google Scholar 

  102. M. Bayer et al., Phys. Rev. Lett. 82, 1748 (1999)

    Article  ADS  Google Scholar 

  103. S. Fukatsu et al., J. Lumin. 80, 429 (1999)

    Article  Google Scholar 

  104. V. Negoita, D.W. Snoke, K. Eberl, Appl. Phys. Lett. 75, 2059 (1999); Phys. Rev. B 60, 2661 (1999)

    Article  ADS  Google Scholar 

  105. S. Petillon et al., J. Cryst. Growth 201/202, 453 (1999)

    Google Scholar 

  106. D.C. Reynolds et al., J. Appl. Phys. 86, 5589 (1999)

    Article  ADS  Google Scholar 

  107. H. Weman et al., Appl. Phys. Lett. 74, 2334 (1999)

    Article  ADS  Google Scholar 

  108. T. Dietl et al., Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  109. P.W. Fry et al., Phys. Rev. Lett. 84, 733 (2000)

    Article  ADS  Google Scholar 

  110. A. Dinger et al., Phys. Rev. B 64, 245310 (2001)

    Article  ADS  Google Scholar 

  111. R. Kotlyar et al., Phys. Rev. B 63, 085310 (2001)

    Article  ADS  Google Scholar 

  112. M. Kuno et al., J. Chem. Phys. 115, 1028 (2001)

    Article  ADS  Google Scholar 

  113. C. Klingshirn (ed.), Landolt–Börnstein. New Series, Group III, vol. 34C, Parts 1 and 2 (Springer, Berlin, 2001 and 2004); Part 3, ed. by E. Kasper, C. Klingshirn (2007)

    Google Scholar 

  114. M. Oestreich et al., Adv. Solid State Phys. 41, 173 (2001)

    Article  Google Scholar 

  115. M. Bayer et al., Phys. Rev. B 65, 195315 (2002)

    Article  ADS  Google Scholar 

  116. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Article  ADS  Google Scholar 

  117. O. Gogolin et al., Private Communication (2002)

    Google Scholar 

  118. K. Chang et al., Appl. Phys. Lett. 80, 1788 (2002)

    Article  ADS  Google Scholar 

  119. W.L. Lambrecht et al., Phys. Rev. B 65, 075207 (2002)

    Article  ADS  Google Scholar 

  120. H. Ohno (ed.), Semiconductor spintronics. Semicond. Sci. Technol. 17(4) (2002)

    Google Scholar 

  121. S. Sonda, IEEE Trans. Mag. 38, 2859 (2002)

    Google Scholar 

  122. K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  123. O. Wolst et al., Phys. E 13, 283 (2002); ibib. E 17, 554 (2003)

    Google Scholar 

  124. G.P. Collins, Sci. Am. 288, 13 (2003)

    Article  Google Scholar 

  125. S.F. Chichibu et al., J. Appl. Phys. 93, 756 (2003)

    Article  ADS  Google Scholar 

  126. T. Dietl, Europhys. News 34, 216 (2003); Phys. Status Solidi b 240, 433 (2003)

    Google Scholar 

  127. T. Dietl, H. Ohno, MRS Bull. 28, 714 (2003)

    Article  Google Scholar 

  128. D. Kholkhlov (ed.), Lead Chalcogenides Physics and Applications. Optoelectronic Properties of Semiconductors and Superlattices, vol. 18. (Taylor and Francis, New York, 2003)

    Google Scholar 

  129. N. Naka, N. Nagasawa, Phys. Status Solidi (b) 238, 397 (2003)

    Article  ADS  Google Scholar 

  130. E.I. Rashba, A.L. Efros, Appl. Phys. Lett. 83, 5295 (2003)

    Article  ADS  Google Scholar 

  131. B. Urbaszek et al., Phys. Rev. Lett. 90, 4 (2003)

    Article  Google Scholar 

  132. S. Adachi, EXCON 04, Cracow, J. Lumin. 112, 34 (2005)

    Google Scholar 

  133. L. Besombes et al., Phys. Rev. Lett. 93, 207403 (2004)

    Article  ADS  Google Scholar 

  134. G.J. Goldsmith in Frontiers of Optical Spectroscopy (2003). NATO Science Series II, vol. 168 (Kluwer, Dordrecht, 2005)

    Google Scholar 

  135. W. Heimbrodt, P.J. Klar, Encyclopedia of Nanoscience and Nanotechnology, vol. 4 (American Scientific Publishers, Stevenson Ranch, 2004), p. 835

    Google Scholar 

  136. A. Högele et al., Phys. Rev. Lett. 93, 217401 (2004)

    Article  ADS  Google Scholar 

  137. B. Meyer et al., Phys. Status Solidi (b) 241, 231 (2004)

    Article  ADS  Google Scholar 

  138. F.J. Brieler et al., Eur. J. Inorg. Chem. 2005, 3597 (2005)

    Article  Google Scholar 

  139. M.F. Doty et al., Phys. Rev. B 71, 201201(R) (2005)

    Article  ADS  Google Scholar 

  140. A. Högele et al., Appl. Phys. Lett. 86, 221905 (2005)

    Article  ADS  Google Scholar 

  141. K.-M.C. Fu et al., Phys. Rev. Lett. 95, 187405 (2005)

    Article  ADS  Google Scholar 

  142. Ü. Özgür et al., J. Appl. Phys. Rev. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  143. M. Grochal, F. Grosse, R. Zimmermann, Phys. Status Solidi C 10, 3492 (2006)

    Article  ADS  Google Scholar 

  144. M. Hetterich et al., Phys. Status Solidi B 243, 812 (2006)

    Article  Google Scholar 

  145. C. Klingshirn et al., Phys. J. 5(1), 33 (2006)

    MathSciNet  Google Scholar 

  146. J. Philip et al., Nat. Mater. 5, 298 (2006)

    Article  ADS  Google Scholar 

  147. S. Seidl et al., Appl. Phys. Lett. 88, 203113 (2006)

    Article  ADS  Google Scholar 

  148. J. Brandt et al., Phys. Rev. Lett. 99, 217403 (2007)

    Article  ADS  Google Scholar 

  149. T. Dietl, J. Phys. Condens. Matter 19, 165204 (2007)

    Article  ADS  Google Scholar 

  150. M. Ediger et al., Phys. Rev. Lett. 98, 98 (2007)

    Google Scholar 

  151. S. Kuroda et al., Nat. Mater. 6, 440 (2007)

    Article  ADS  Google Scholar 

  152. A. Kudelski et al., Phys. Rev. Lett. 99, 247209 (2007)

    Article  ADS  Google Scholar 

  153. S. Seidl et al., Phys. Status Solidi 204, 381 (2007)

    Article  ADS  Google Scholar 

  154. K. Ando et al., Phys. Rev. Lett. 100, 067204 (2008)

    Article  ADS  Google Scholar 

  155. L.C. Smith et al., Phys. Rev. B 78, 085204 (2008)

    Article  ADS  Google Scholar 

  156. C. Sandfort et al., Phys. Rev. B 78, 045201 (2008)

    Article  ADS  Google Scholar 

  157. J.J. Davies et al., Phys. Status Solidi B 247, 1521 (2010)

    Article  ADS  Google Scholar 

  158. C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  159. D.K. Loginov et al., Phys. Status Solidi B 247, 1528 (2010)

    Article  ADS  Google Scholar 

  160. S.L. Chen, W.M. Chen, I.A. Buyanova, Appl. Phys. Lett. 99, 091909 (2011)

    Article  ADS  Google Scholar 

  161. C. Klingshirn (ed.), Landolt–Börnstein. New Series, Group III, vol. 34A (Springer, Heidelberg, in preparation for 2012)

    Google Scholar 

  162. R.J. Warburton, Nat. Mater. 12, 483 (2013)

    Article  ADS  Google Scholar 

  163. L. Besombes, H. Boukari, Phys. Rev. B 89, 085315 (2014)

    Article  ADS  Google Scholar 

  164. C. Huber et al., Phys. Rev. B 92, 075201 (2015). https://doi.org/10.1103/PhysRevB.92.075201

    Article  ADS  Google Scholar 

  165. C. Krämmer et al., Appl. Phys. Lett. 107, 222104 (2015). https://doi.org/10.1063/1.4936649

    Article  ADS  Google Scholar 

  166. F. Ruf et al., Appl. Phys. Lett. 112, 083902 (2018). https://doi.org/10.1063/1.5017943

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

24.1

Typical values of the deformation potential are around 10 eV. What is the shift of the band edges for \(\Delta a/a = 10^{-3}\)?

24.2

Do you expect the band-gap shifts due to the lattice deformation by acoustic and by optical phonons to be identical or not? Why?

24.3

Calculate the diamagnetic shift at \(\varvec{B}= 10\) T for excitons characterized by \(E^{\text {b}}_{\text {ex}} = 5\,\text {meV}\), \(\varepsilon = 15\) and by \(E^{\text {b}}_{\text {ex}} = 100\,\text {meV}\), \(\varepsilon = 6\), respectively.

24.4

Calculate the Zeeman splitting for a spin singlet and a triplet exciton for \(n_{\text {B}} = 1\), \(g_{\text {e}} = 1.6\) and \(g_{\text {h}} = 2.2\). What is the difference if at \({\varvec{B}} = 0\) the two states already show a finite energy splitting \(\delta \)?

24.5

Do you expect that the linear Stark effect can occur for \(n_{\text {B}} = 1\) and/or for \(n_{\text {B}} = 2\) excitons? Why?

24.6

Calculate in the simplest approximation the Stark shift for excitons with the data given in connection with Problem 3 and for an electric field strength E of 10\(^3\) Vm\(^{-1}\), 10\(^6\) Vm\(^{-1}\), and 10\(^{-2}\) \(E^{\text {b}}_{\text {ex}}(ea_{\text {B}})^{-1}\).

24.7

Calculate the quantum confined Stark effect by perturbation theory for a quantum well with infinitely high barriers and the other data as for the hh exciton in GaAs or InAs. Compare with experimental data.

24.8

Proof whether the two examples given in the introduction to this chapter are correct.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Excitons Under the Influence of External or Internal Fields. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_24

Download citation

Publish with us

Policies and ethics