Skip to main content

Excitations in One-Component Carrier Gases

  • Chapter
  • First Online:
Book cover Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2149 Accesses

Abstract

The linear optical properties of heavily doped semiconductors are strongly influenced by the plasma of free carriers present in this samples. This includes of course the (degenerate) occupation of band states as well as correlation effects like collective excitations. We will address the implications of plasmons and pair excitations in the carrier gas and the description of the related optical properties in the Drude–Lorentz model. We illustrate the optical properties related to surface plasmons and of plasmon-phonon mixed states both, in bulk and low-dimensional semiconductors. We close with a discussion of prominent correlation effects like the Burstein–Moss shift and the Fermi-edge singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)

    Article  ADS  Google Scholar 

  2. G.D. Mahan, Phys. Rev. 153, 882 (1967)

    Article  ADS  Google Scholar 

  3. F. Stern, Phys. Rev. Lett. 18, 546 (1967)

    Article  ADS  Google Scholar 

  4. N. Marshall, B. Fischer, H.-J. Queisser, Phys. Rev. Lett. 27, 95 (1971)

    Article  ADS  Google Scholar 

  5. D.A. Dahl, L.J. Sham, Phys. Rev. B 16, 651 (1977)

    Article  ADS  Google Scholar 

  6. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modern Physics, vol. 88 (Springer, Berlin, 1980)

    Google Scholar 

  7. U. Nowak, W. Richter, G. Sachs, Phys. Status Solidi (b) 108, 131 (1981)

    Article  ADS  Google Scholar 

  8. R. Höpfel et al., Surf. Sci. 113, 118 (1982)

    Article  ADS  Google Scholar 

  9. D. Olego et al., Phys. Rev. B 25, 7867 (1982)

    Article  ADS  Google Scholar 

  10. A. Pinczuk, J.M. Worlock, Physica 117/118B, 637 (1983)

    Google Scholar 

  11. H. Nather, L.G. Quagliano, Solid State Commun. 50, 75 (1984)

    Article  ADS  Google Scholar 

  12. Y.-C. Chang, G.D. Sanders, Phys. Rev. B 32, 5521 (1985)

    Article  ADS  Google Scholar 

  13. E. Egri, Phys. Rep. 119, 363 (1985)

    Article  ADS  Google Scholar 

  14. D. Heitmann, Surf. Sci. 170, 332 (1986)

    Article  ADS  Google Scholar 

  15. G. Fasol et al., Phys. Rev. Lett. 56, 2517 (1986)

    Article  ADS  Google Scholar 

  16. A. Pinczuk, M.G. Lamont, A.C. Gossard, Phys. Rev. Lett. 56, 2092 (1986)

    Article  ADS  Google Scholar 

  17. A.E. Ruckenstein, S. Schmitt-Rink, Phys. Rev. B 35, 7551 (1987)

    Article  ADS  Google Scholar 

  18. M.S. Skolnick et al., Phys. Rev. Lett. 58, 2130 (1987)

    Article  ADS  Google Scholar 

  19. G. Livescu et al., IEEE J. Quant. Electron. 24, 1677 (1988)

    Article  ADS  Google Scholar 

  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111 (Springer, Berlin, 1988)

    Google Scholar 

  21. R. Cingolani, W. Stolz, K. Ploog, Phys. Rev. B 40, 2950 (1989)

    Article  ADS  Google Scholar 

  22. G. Fasol, R.D. King-Smith, D. Richards, U. Ekenberg, N. Mestres, K. Ploog, Phys. Rev. B 39, 12695 (1989)

    Article  ADS  Google Scholar 

  23. M. Helm et al., Phys. Rev. Lett. 63, 74 (1989)

    Article  ADS  Google Scholar 

  24. H. Kalt, K. Leo, R. Cingolani, K. Ploog, Phys. Rev. 40, 12017 (1989)

    Article  Google Scholar 

  25. T. Zettler et al., Phys. Rev. B 39, 3931 (1989)

    Article  ADS  Google Scholar 

  26. J.-W. Wu, Phys. Rev. B 39, 7992 (1989)

    Article  ADS  Google Scholar 

  27. U. Merkt, Festkörperprobleme/Adv. Solid State Phys. 30, 70 (1990)

    Google Scholar 

  28. T. Uenoyama, L.J. Sham, Phys. Rev. Lett. 65, 1048 (1990)

    Article  ADS  Google Scholar 

  29. Y.-H. Zhang, D.-S. Jiang, R. Cingolani, K. Ploog, Appl. Phys. Lett. 56, 2195 (1990)

    Article  ADS  Google Scholar 

  30. W. Chen et al., Phys. Rev. B 43, 14738 (1991)

    Article  ADS  Google Scholar 

  31. Th Egeler, Festkörperprobleme/Adv. Solid State Phys. 31, 315 (1991)

    Google Scholar 

  32. P. Hawrylak, Phys. Rev. B 44, 3821 (1991)

    Article  ADS  Google Scholar 

  33. M.S. Skolnick et al., Phys. Rev. B 43, 7354 (1991)

    Article  ADS  Google Scholar 

  34. J. Wagner, A. Fischer, K. Ploog, Appl. Phys. Lett. 59, 428 (1991)

    Article  ADS  Google Scholar 

  35. J. Wagner, A. Ruiz, K. Ploog, Phys. Rev. B 43, 12134 (1991)

    Article  ADS  Google Scholar 

  36. S. Haake et al., Phys. Rev. B 45, 1736 (1992)

    Article  ADS  Google Scholar 

  37. M. Fritze, A.V. Nurmikko, P. Hawrilak, Phys. Rev. B 48, 4960 (1993)

    Article  ADS  Google Scholar 

  38. F.J. Rodriguez, C. Tejedor, Phys. Rev. B 47, 1506 (1993)

    Article  ADS  Google Scholar 

  39. L.C.Ó. Súilleabháin et al., Solid State Commun. 87, 517 (1993)

    Article  ADS  Google Scholar 

  40. M.S. Skolnick et al., Solid State Electron. 37, 825 (1994)

    Article  ADS  Google Scholar 

  41. J.M. Calleja et al., Phys. Rev. B 51, 4285 (1995)

    Article  ADS  Google Scholar 

  42. U. Kreibig, R. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Sciences, vol. 25 (Springer, Berlin, 1995)

    Book  Google Scholar 

  43. R. von Baltz, Spectroscopy and Dynamics of Collective Excitations in Solids (1995). NATO ASI Series B, vol. 356 (Plenum Press, New York, 1997)

    Google Scholar 

  44. S.A. Brown, J.F. Young, Z. Wasilewski, P.T. Coleridge, Phys. Rev. B 56, 3937 (1997)

    Article  ADS  Google Scholar 

  45. M. Göppert et al., J. Lumin. 72–74, 430 (1997)

    Article  Google Scholar 

  46. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  47. D.D. Awschalom, J.M. Kikkawa, Phys. Today 52(6), 33 (1999)

    Article  Google Scholar 

  48. R. Fiederling et al., Nature 402, 6783 (1999)

    Article  Google Scholar 

  49. M. Göppert, Dissertation, Universität Karlsruhe (TH) (2000)

    Google Scholar 

  50. M. Nagai, M. Kuwata-Gonokami, Phys. Status Solidi B 221, 261 (2000), J. Lumin. 100, 233 (2002)

    Google Scholar 

  51. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  52. M. Oestreich et al., Festkörperprobleme/Adv. Solid State Phys. 41, 173 (2001)

    Google Scholar 

  53. M. Nagai, K. Ohkawa, M. Kuwata-Gonokami, Appl. Phys. Lett. 81, 484 (2002)

    Article  ADS  Google Scholar 

  54. M. Dressel, G. Grüner, Electrodynamics of Solids, Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  55. C. Janke et al., Phys. Rev. B 69, 205314 (2004), Opt. Lett. 30, 2357 (2005)

    Google Scholar 

  56. J.G. Rivas, P.H. Bolivan, H. Kurz, Opt. Lett. 29, 1680 (2004)

    Article  ADS  Google Scholar 

  57. A.K. Azad, Y. Zhao, W. Zhang, Appl. Phys. Lett. 86, 141102 (2005)

    Article  ADS  Google Scholar 

  58. R. Huber et al., Phys. Rev. Lett. 94, 027401 (2005)

    Article  ADS  Google Scholar 

  59. E.U. Donev et al., Phys. Rev. B 73, 201401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. C. Schüller, Inelastic Light Scattering of Semiconductor Nanostructures (Springer, Berlin, 2006)

    Google Scholar 

  61. H. Liu et al., Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  62. T. Ergin et al., Science 327, 337 (2010)

    Article  ADS  Google Scholar 

  63. N. Feth et al., Opt. Express 18, 6545 (2010)

    Article  ADS  Google Scholar 

  64. J. Geurts Chap. 2 in Ref. [10K1]

    Google Scholar 

  65. S.V. Gaponenko, Introduction to Nanophotonics (Cambridge Univercity Press, Cambridge, 2010)

    Google Scholar 

  66. C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: from Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin, 2010)

    Book  Google Scholar 

  67. H. Liu et al., Phys. Rev. B 81, 241403 (2010)

    Article  ADS  Google Scholar 

  68. A. Schleife et al., Phys. Rev. Lett. 107, 236405 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

19.1

Calculate the plasmon energy \(\hbar \omega ^{0}_{\text {Pl}}\) for a typical three-dimensional semiconductor \((m_{\text {e}} = 0.1m_{0})\) and \(n=10^{16}\), \(10^{17}\) and \(10^{18}\) cm\(^{-3}\). Compare with the eigenenergies of optical phonons.

19.2

Calculate \(\hbar \omega ^0_{\text {Pl}}\) for a metal \((n\thickapprox 10^{22}- 10^{23}\)cm\(^{3})\). Using the knowledge of Chap. 7, consider which value should be taken for the dielectric “constant” \(\varepsilon \)?

19.3

What is the origin of the color of some metals like gold or copper? Remember that there are, apart from plasmons, interband-transitions in metals.

19.4

Why are radio waves in the short wave range (KW) reflected by the upper layers of the atmosphere but not ultrashort waves (UKW)?

19.5

Why are surface plasmons important for the spectral efficiency of a metal- covered diffraction grating?

19.6

Make a sketch of the dielectric function of plasmon–phonon mixed states for \(\omega _{{\text {Pl}}}^0 >\omega _0 \).

19.7

Calculate the density of electrons at which \(\hbar \omega _{\text {PL}} = \hbar \varOmega _{\text {LO}}\) for ZnO and InAs. Up to which temperatures are the electron gases degenerate?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Excitations in One-Component Carrier Gases. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_19

Download citation

Publish with us

Policies and ethics