Skip to main content

Phonons in Solids of Perturbed Lattice Periodicity

  • Chapter
  • First Online:
  • 2147 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In this chapter we treat the properties of phonons in scenarios where the periodicity of the crystalline lattice is perturbed. This is the case for crystals with a random distribution of atoms on lattice sites (alloys) or for local deviations from periodicity (defects). We also consider the situation of reduced periodicity in layered structures like superlattices and quantum wells. Finally we address confinement of phonons in quantum dots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I.F. Chang, S.S. Mitra, Phys. Rev. 172, 924 (1968)

    Article  ADS  Google Scholar 

  2. W.G. Spitzer, Festkörperprobleme/Adv. Solid State Phys. 11, 1 (1971)

    ADS  Google Scholar 

  3. C. Colvard et al., Rev. Lett. 28, 811 (1972)

    Article  Google Scholar 

  4. C.G. Granqvist, O. Hunderi, Phys. Rev. B 18, 2897 (1978)

    Article  ADS  Google Scholar 

  5. B. Di Bartolo (ed.), Nonlinear Spectroscopy of Solids: Advances and Application (1993). NATO ASI Series B, vol. 339 (Plenum Press, New York, 1994)

    Google Scholar 

  6. M. Lannoo, Point Defects in Semiconductors I: Theoretical Aspects. Springer Series in Solid-State Sciences, vol. 22 (Springer, Berlin, 1981)

    Chapter  Google Scholar 

  7. J. Bourgoin, Point Defects in Semiconductors II: Experimental Aspects. Springer Series in Solid-State Sciences, vol. 33 (Springer, Berlin, 1983)

    Google Scholar 

  8. B. Jusserand, M. Cardona, in Topics in Applied Physics, vol. 66 (Springer, Berlin, 1989)

    Google Scholar 

  9. M. Fujii et al., Phys. Rev. B 46, 15936 (1992)

    Article  ADS  Google Scholar 

  10. S. Nomara, T. Kobayashi, Solid State Commun. 82, 335 (1992)

    Article  ADS  Google Scholar 

  11. T. Ruf et al., Phys. Rev. Lett. 71, 3035 (1993)

    Article  ADS  Google Scholar 

  12. A. Tomaka, S. Onari, T. Arai, Phys. Rev. B 47, 1237 (1993)

    ADS  Google Scholar 

  13. M. Cardona, Festkörperprobleme/Adv. Solid State Phys. 34, 35 (1994)

    Google Scholar 

  14. T. Ruf et al., Festkörperprobleme/Adv. Solid State Phys. 34, 237 (1994)

    Google Scholar 

  15. S. Okamoto, Y. Masumot, J. Lumin. 64, 253 (1995)

    Article  Google Scholar 

  16. U. Woggon et al., Phys. Rev. B 54, 1506 (1996)

    Article  ADS  Google Scholar 

  17. R. Merlin, Solid State Commun. 102, 207 (1997)

    Article  ADS  Google Scholar 

  18. R.V. Velasco, F. Garcia-Moliner, Surf. Sci. Rep. 28, 123 (1997)

    Article  ADS  Google Scholar 

  19. A.P. Alivisatos et al., J. Chem. Phys. 89, 4001 (1998)

    Article  ADS  Google Scholar 

  20. M. Göppert et al., Phys. Rev. B 57, 13068 (1998)

    Article  ADS  Google Scholar 

  21. A. Dinger et al., Phys. Status Solidi (b) 215, 413 (1999)

    Article  ADS  Google Scholar 

  22. A. Dinger et al., Phys. Rev. B 64, 245310 (2001)

    Article  ADS  Google Scholar 

  23. A. Kaschner et al., Appl. Phys. Lett. 80, 1909 (2002)

    Article  ADS  Google Scholar 

  24. C. Klingshirn (ed.), Landolt–Börnstein. New Series, Group III, vol. 34C, Parts 1 and 2 (Springer, Berlin, 2001 and 2004); Part 3, ed. by E. Kasper, C. Klingshirn (2007)

    Google Scholar 

  25. J. Faist, C. Sirtori, D. Hofstetter, Quantum Cascade Lasers (Clarendon Press, Oxford, 2003)

    Google Scholar 

  26. K.C. Agarwal et al., Phys. Rev. B 73, 045211 (2006)

    Article  ADS  Google Scholar 

  27. J. Han et al., J. Phys. Chem. B 110, 1989 (2006)

    Article  Google Scholar 

  28. M. Först, T. Dekorsy, in Coherent Vibrational Spectroscopy, ed. by S. de Silvestri, G. Cerullo, G. Lanzani (2008), p. 129

    Google Scholar 

  29. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, Hoboken, 2009)

    Google Scholar 

  30. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Berlin, 2010)

    Google Scholar 

  31. U.W. Pohl, Epitaxy of Semiconductors: Introduction to Physical Principles (Springer, Berlin, 2013)

    Google Scholar 

  32. N.W. Ashcroft, N.D. Mermin, D. Wei, Solid State Physics, Revised edn. (Cengage Learning Asia, Singapore, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

13.1

(a) Derive a simple formula to estimate the average sound velocity in a superlattice from two materials A and B with thicknesses \(d_\text {A}\), \(d_\text {B}\) and speeds of sound \(v_\text {A}\), \(v_\text {B}\), respectively. (b) Try to estimate the average speed of sound and the respective speeds for CdS and ZnSe from the data of Fig. 13.7a.

13.2

Sketch the qualitative atomic displacement of the first few (small wave vector in growth direction) confined optical phonon modes in an (GaAs)\(_{n}\)(AlAs)\(_{n}\) superlattice. What do you expect for the movement of the atoms right at the interface between the layers?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Phonons in Solids of Perturbed Lattice Periodicity. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_13

Download citation

Publish with us

Policies and ethics