Skip to main content

Disease Mechanisms

  • Chapter
  • First Online:
Book cover Behçet Syndrome

Abstract

An infectious agent is possibly required to trigger the inflammation in Behçet syndrome (BS). Innate immune system through neutrophils is activated early and aggressively. However, unlike classical autoinflammatory disorders, an adaptive response is also possibly sustained through bacterial persistence or autoantigen-activated dendritic T or B cells with mainly a pro-inflammatory and Th1/Th17 type of cytokine profile. Adaptive immune responses against various autoantigens such as heat shock proteins are shown to be expressed, especially by the nature of the peripheral blood cells of BS patients; however, their pathogenic role is still not clear. Among genetic associations, HLA-B∗51 is the most clearly defined, and “MHC-I-opathies” are suggested as a unified concept of spondyloarthropathies and BS. Organ-specific pathogenic factors such as venous thrombotic tendency or the role of male gender in disease severity are also not clarified yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazici H, Seyahi E, Hatemi G, Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14(2):119.

    Article  PubMed  Google Scholar 

  2. Direskeneli H. Behcet’s disease: infectious aetiology, new autoantigens, and HLA-B51. Ann Rheum Dis. 2001;60(11):996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGonagle D, Aydin SZ, Gul A, Mahr A, Direskeneli H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behcet disease. Nat Rev Rheumatol. 2015;11(12):731–40.

    Article  CAS  PubMed  Google Scholar 

  4. Zierhut M, Mizuki N, Ohno S, Inoko H, Gul A, Onoe K, et al. Immunology and functional genomics of Behcet’s disease. Cell Mol Life Sci. 2003;60(9):1903–22.

    Article  CAS  PubMed  Google Scholar 

  5. Mumcu G, Inanc N, Yavuz S, Direskeneli H. The role of infectious agents in the pathogenesis, clinical manifestations and treatment strategies in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S27–33.

    CAS  PubMed  Google Scholar 

  6. Hatemi G, Bahar H, Uysal S, Mat C, Gogus F, Masatlioglu S, et al. The pustular skin lesions in Behcet’s syndrome are not sterile. Ann Rheum Dis. 2004;63(11):1450–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee S, Bang D, Cho YH, Lee ES, Sohn S. Polymerase chain reaction reveals herpes simplex virus DNA in saliva of patients with Behcet’s disease. Arch Dermatol Res. 1996;288(4):179–83.

    Article  CAS  PubMed  Google Scholar 

  8. Mege JL, Dilsen N, Sanguedolce V, Gul A, Bongrand P, Roux H, et al. Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behcet’s disease. A comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol. 1993;20(9):1544–9.

    CAS  PubMed  Google Scholar 

  9. Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behcet’s disease: new insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17(6):567–75.

    Article  CAS  PubMed  Google Scholar 

  10. Eksioglu-Demiralp E, Direskeneli H, Kibaroglu A, Yavuz S, Ergun T, Akoglu T. Neutrophil activation in Behcet’s disease. Clin Exp Rheumatol. 2001;19(5 Suppl 24):S19–24.

    CAS  PubMed  Google Scholar 

  11. Takeno M, Kaiyone A, Yamashita N, Takiguchi M, Mizushima Y, Kaneoka H, et al. Excessive function of peripheral blood neutrophils from patients with Behcet’s disease and from HLA-B51 transgenic mice. Arthritis Rheum. 1995;38:426–33.

    Article  CAS  PubMed  Google Scholar 

  12. Fujimori K, Oh-i K, Takeuchi M, Yamakawa N, Hattori T, Kezuka T, et al. Circulating neutrophils in Behcet disease is resistant for apoptotic cell death in the remission phase of uveitis. Graefes Arch Clin Exp Ophthalmol. 2008;246(2):285–90.

    Article  PubMed  Google Scholar 

  13. Han EC, Cho SB, Ahn KJ, Oh SH, Kim J, Kim DS, et al. Expression of pro-inflammatory protein S100A12 (EN-RAGE) in Behcet’s disease and its association with disease activity: a pilot study. Ann Dermatol. 2011;23(3):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mumcu G, Cimilli H, Karacayli U, Inanc N, Ture-Ozdemir F, Eksioglu-Demiralp E, et al. Salivary levels of antimicrobial peptides Hnp 1-3, Ll-37 and S100 in Behcet’s disease. Arch Oral Biol. 2012;57(6):642–6.

    Article  CAS  PubMed  Google Scholar 

  15. Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in BEHCET’S disease. J Dermatol Sci. 2018;92(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  16. Hasan MS, Bergmeier LA, Petrushkin H, Fortune F. Gamma delta (gammadelta) T cells and their involvement in Behcet’s disease. J Immunol Res. 2015;2015:705831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Freysdottir J, Hussain L, Farmer I, Lau S-H, Fortune F. Diversity of gammadelta T cells in patients with Behcet’s disease is indicative of polyclonal activation. Oral Dis. 2006;12(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ergun T, Ince U, Eksioglu-Demiralp E, Direskeneli H, Gurbuz O, Gurses L, et al. HSP 60 expression in mucocutaneous lesions of Behcet’s disease. J Am Acad Dermatol. 2001;45(6):904–9.

    Article  CAS  PubMed  Google Scholar 

  19. Triolo G, Accardo-Palumbo A, Dieli F, Ciccia F, Ferrante A, Giardina E, et al. Vgamma9/Vdelta2 T lymphocytes in Italian patients with Behcet’s disease: evidence for expansion, and tumour necrosis factor receptor II and interleukin-12 receptor beta1 expression in active disease. Arthritis Res Ther. 2003;5(5):R262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Accardo-Palumbo A, Giardina AR, Ciccia F, Ferrante A, Principato A, Impastato R, et al. Phenotype and functional changes of Vgamma9/Vdelta2 T lymphocytes in Behcet’s disease and the effect of infliximab on Vgamma9/Vdelta2 T cell expansion, activation and cytotoxicity. Arthritis Res Ther. 2010;12(3):R109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Direskeneli H, Saruhan-Direskeneli G. The role of heat shock proteins in Behcet’s disease. Clin Exp Rheumatol. 2003;21(4 Suppl 30):S44–8.

    CAS  PubMed  Google Scholar 

  22. Parlakgul G, Guney E, Erer B, Kilicaslan Z, Direskeneli H, Gul A, et al. Expression of regulatory receptors on gammadelta T Cells and their cytokine production in Behcet’s disease. Arthritis Res Ther. 2013;15(1):R15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deniz R, Tulunay-Virlan A, Ture Ozdemir F, Unal AU, Ozen G, Alibaz-Oner F, et al. Th17-inducing conditions lead to in vitro activation of both Th17 and Th1 responses in Behcet’s disease. Immunol Investig. 2017;46(5):518–25.

    Article  CAS  Google Scholar 

  24. Clemente Ximenis A, Crespi Bestard C, Cambra Conejero A, Pallares Ferreres L, Juan Mas A, Olea Vallejo JL, et al. In vitro evaluation of gammadelta T cells regulatory function in Behcet’s disease patients and healthy controls. Hum Immunol. 2016;77(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kaneko F, Takahashi Y, Muramatsu R, Adachi K, Miura Y, Nakane A, et al. Natural killer cell numbers and function in peripheral lymphoid cells in Behcet’s disease. Br J Dermatol. 1985;113(3):313–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hamzaoui K, Ayed K, Hamza M, Touraine JL. Natural killer cells in Behcet’s disease. Clin Exp Immunol. 1988;71(1):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamaguchi Y, Takahashi H, Satoh T, Okazaki Y, Mizuki N, Takahashi K, et al. Natural killer cells control a T-helper 1 response in patients with Behcet’s disease. Arthritis Res Ther. 2010;12(3):R80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kucuksezer UC, Aktas-Cetin E, Bilgic-Gazioglu S, Tugal-Tutkun I, Gul A, Deniz G. Natural killer cells dominate a Th-1 polarized response in Behcet’s disease patients with uveitis. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S24–9.

    PubMed  Google Scholar 

  29. Cosan F, Aktas Cetin E, Akdeniz N, Emrence Z, Cefle A, Deniz G. Natural killer cell subsets and their functional activity in Behcet’s disease. Immunol Investig. 2017;46(4):419–32.

    Article  CAS  Google Scholar 

  30. Saruhan-Direskeneli G, Uyar FA, Cefle A, Onder SC, Eksioglu-Demiralp E, Kamali S, et al. Expression of KIR and C-type lectin receptors in Behcet’s disease. Rheumatology (Oxford). 2004;43(4):423–7.

    Article  CAS  Google Scholar 

  31. Erer B, Takeuchi M, Ustek D, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, et al. Evaluation of KIR3DL1/KIR3DS1 polymorphism in Behcet’s disease. Genes Immun. 2016;17(7):396–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005;17(5):586–99.

    Article  CAS  PubMed  Google Scholar 

  33. Gul A. Beh et’s disease as an autoinflammatory disorder. Curr Drug Targets Inflamm Allergy. 2005;4(1):81–3.

    Article  PubMed  Google Scholar 

  34. Atagunduz P, Ergun T, Direskeneli H. MEFV mutations are increased in Behcet’s disease (BS) and are associated with vascular involvement. Clin Exp Rheumatol. 2003;21(4 Suppl 30):S35–7.

    CAS  PubMed  Google Scholar 

  35. Rabinovich E, Shinar Y, Leiba M, Ehrenfeld M, Langevitz P, Livneh A. Common FMF alleles may predispose to development of Behcet’s disease with increased risk for venous thrombosis. Scand J Rheumatol. 2007;36(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  36. Kirino Y, Zhou Q, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behcet disease. Proc Natl Acad Sci U S A. 2013;110(20):8134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yazici H, Fresko I. Behcet’s disease and other autoinflammatory conditions: what’s in a name? Clin Exp Rheumatol. 2005;23(4 Suppl 38):S1–2.

    PubMed  Google Scholar 

  38. Ergun T, Gurbuz O, Harvell J, Jorizzo J, White W. The histopathology of pathergy: a chronologic study of skin hyperreactivity in Behcet’s disease. Int J Dermatol. 1998;37(12):929–33.

    Article  CAS  PubMed  Google Scholar 

  39. Melikoglu M, Uysal S, Krueger JG, Kaplan G, Gogus F, Yazici H, et al. Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol. 2006;177(9):6415–21.

    Article  CAS  PubMed  Google Scholar 

  40. Tunc R, Uluhan A, Melikoglu M, Ozyazgan Y, Ozdogan H, Yazici H. A reassessment of the International Study Group criteria for the diagnosis (classification) of Behcet’s syndrome. Clin Exp Rheumatol. 2001;19(5 Suppl 24):S45–7.

    CAS  PubMed  Google Scholar 

  41. Cakir N, Yazici H, Chamberlain MA, Barnes CG, Yurdakul S, Atasoy S, et al. Response to intradermal injection of monosodium urate crystals in Behcet’s syndrome. Ann Rheum Dis. 1991;50(9):634–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gogus F, Fresko I, Elbir Y, Eksioglu-Demiralp E, Direskeneli H. Oxidative burst response to monosodium urate crystals in patients with Behcet’s syndrome. Clin Exp Rheumatol. 2005;23(4 Suppl 38):S81–5.

    CAS  PubMed  Google Scholar 

  43. Direskeneli H, Eksioglu-Demiralp E, Kibaroglu A, Yavuz S, Ergun T, Akoglu T. Oligoclonal T cell expansions in patients with Behcet’s disease. Clin Exp Immunol. 1999;117(1):166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esin S, Gul A, Hodara V, Jeddi-Tehrani M, Dilsen N, Konice M, et al. Peripheral blood T cell expansions in patients with Behcet’s disease. Clin Exp Immunol. 1997;107(3):520–7.

    Article  CAS  PubMed  Google Scholar 

  45. Frassanito M, Dammacco R, Cafforio P, Dammacco F. Th1 polarization of the immune response in Behcet’s disease. Arthritis Rheum. 1999;42:1967–74.

    Article  CAS  PubMed  Google Scholar 

  46. Sugi-Ikai N, Nakazawa M, Nakamura S, Ohno S, Minami M. Increased frequencies of interleukin-2- and interferon-gamma-producing T cells in patients with active Behcet’s disease. Invest Ophthalmol Vis Sci. 1998;39(6):996–1004.

    CAS  PubMed  Google Scholar 

  47. Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, Masuda C, et al. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2005;139(2):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nara K, Kurokawa MS, Chiba S, Yoshikawa H, Tsukikawa S, Matsuda T, et al. Involvement of innate immunity in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2008;152(2):245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lew W, Chang JY, Jung JY, Bang D. Increased expression of interleukin-23 p19 mRNA in erythema nodosum-like lesions of Behcet’s disease. Br J Dermatol. 2008;158(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  50. Mantas C, Direskeneli H, Eksioglu-Demiralp E, Akoglu T. Serum levels of Th2 cytokines IL-4 and IL-10 in Behcet’s disease. J Rheumatol. 1999;26(2):510–2.

    CAS  PubMed  Google Scholar 

  51. Suzuki Y, Hoshi K, Matsuda T, Mizushima Y. Increased peripheral blood gamma delta+ T cells and natural killer cells in Behcet’s disease. J Rheumatol. 1992;19(4):588–92.

    CAS  PubMed  Google Scholar 

  52. Ahn JK, Chung H, Lee DS, Yu YS, Yu HG. CD8brightCD56+ T cells are cytotoxic effectors in patients with active Behcet’s uveitis. J Immunol. 2005;175(9):6133–42.

    Article  CAS  PubMed  Google Scholar 

  53. Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10(2):206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K. Cytokine profile in Behcet’s disease patients. Relationship with disease activity. Scand J Rheumatol. 2002;31(4):205–10.

    Article  PubMed  Google Scholar 

  55. Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49(7):3058–64.

    Article  PubMed  Google Scholar 

  56. Geri G, Terrier B, Rosenzwajg M, Wechsler B, Touzot M, Seilhean D, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behcet disease. J Allergy Clin Immunol. 2011;128(3):655–64.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Tian Y, Ye Z, Kijlstra A, Zhou Y, Yang P. Decreased interleukin 27 expression is associated with active uveitis in Behcet’s disease. Arthritis Res Ther. 2014;16(3):R117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Nanke Y, Yago T, Kotake S. The role of Th17 cells in the pathogenesis of Behcet’s disease. J Clin Med. 2017;6(7).

    Article  PubMed Central  CAS  Google Scholar 

  59. Lightman S, Taylor SR, Bunce C, Longhurst H, Lynn W, Moots R, et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann Rheum Dis. 2015;74(6):1138–44.

    Article  CAS  PubMed  Google Scholar 

  60. Hamzaoui K, Hamzaoui A, Houman H. CD4+CD25+ regulatory T cells in patients with Behcet’s disease. Clin Exp Rheumatol. 2006;24(5 Suppl 42):S71–8.

    CAS  PubMed  Google Scholar 

  61. Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol. 2008;18(4):354–8.

    Article  PubMed  Google Scholar 

  62. Hamzaoui K. Paradoxical high regulatory T cell activity in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S107–13.

    CAS  PubMed  Google Scholar 

  63. Ye Z, Deng B, Wang C, Zhang D, Kijlstra A, Yang P. Decreased B and T lymphocyte attenuator in Behcet’s disease may trigger abnormal Th17 and Th1 immune responses. Sci Rep. 2016;6:20401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yazici H. The place of Behcet’s syndrome among the autoimmune diseases. Int Rev Immunol. 1997;14(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  65. Gunaydin I, Ustundag C, Kaner G, Pazarli H, Yurdakul S, Hamuryudan V, et al. The prevalence of Sjogren’s syndrome in Behcet’s syndrome. J Rheumatol. 1994;21(9):1662–4.

    CAS  PubMed  Google Scholar 

  66. Direskeneli H. Autoimmunity vs autoinflammation in Behcet’s disease: do we oversimplify a complex disorder? Rheumatology (Oxford). 2006;45(12):1461–5.

    Article  CAS  Google Scholar 

  67. Eksioglu-Demiralp E, Kibaroglu A, Direskeneli H, Yavuz S, Karsli F, Yurdakul S, et al. Phenotypic characteristics of B cells in Behcet’s disease: increased activity in B cell subsets. J Rheumatol. 1999;26(4):826–32.

    CAS  PubMed  Google Scholar 

  68. Direskeneli H, Keser G, D’Cruz D, Khamashta MA, Akoglu T, Yazici H, et al. Anti-endothelial cell antibodies, endothelial proliferation and von Willebrand factor antigen in Behcet’s disease. Clin Rheumatol. 1995;14(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  69. Michelson JB, Chisari FV, Kansu T. Antibodies to oral mucosa in patients with ocular Behcet’s disease. Ophthalmology. 1985;92(9):1277–81.

    Article  CAS  PubMed  Google Scholar 

  70. Nagafuchi H, Takeno M, Yoshikawa H, Kurokawa MS, Nara K, Takada E, et al. Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behcet’s disease. Clin Exp Immunol. 2005;139(2):363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lule S, Colpak AI, Balci-Peynircioglu B, Gursoy-Ozdemir Y, Peker S, Kalyoncu U, et al. Behcet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun. 2017;84:87–96.

    Article  CAS  PubMed  Google Scholar 

  72. Ohno S, Asanuma T, Sugiura S, Wakisaka A, Aizawa M, Itakura K. HLA-Bw51 and Behcet’s disease. JAMA. 1978;240(6):529.

    Article  CAS  PubMed  Google Scholar 

  73. Gul A, Hajeer AH, Worthington J, Barrett JH, Ollier WE, Silman AJ. Evidence for linkage of the HLA-B locus in Behcet’s disease, obtained using the transmission disequilibrium test. Arthritis Rheum. 2001;44(1):239–40.

    Article  CAS  PubMed  Google Scholar 

  74. Giza M, Koftori D, Chen L, Bowness P. Is Behcet’s disease a ‘class 1-opathy’? The role of HLA-B∗51 in the pathogenesis of Behcet’s disease. Clin Exp Immunol. 2018;191(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  75. Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, Remmers EF. Behcet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2014;111(24):8867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yasuoka H, Okazaki Y, Kawakami Y, Hirakata M, Inoko H, Ikeda Y, et al. Autoreactive CD8+ cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behcet’s disease. Arthritis Rheum. 2004;50(11):3658–62.

    Article  CAS  PubMed  Google Scholar 

  77. Gul A. Pathogenesis of Behcet’s disease: autoinflammatory features and beyond. Semin Immunopathol. 2015;37(4):413–8.

    Article  PubMed  Google Scholar 

  78. Gul A, Uyar FA, Inanc M, Ocal L, Barrett JH, Aral O, et al. A weak association of HLA-B∗2702 with Behcet’s disease. Genes Immun. 2002;3(6):368–72.

    Article  CAS  PubMed  Google Scholar 

  79. Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24(11):2579–85.

    Article  CAS  PubMed  Google Scholar 

  80. Baum H, Davies H, Peakman M. Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today. 1996;17(2):64–70.

    Article  CAS  PubMed  Google Scholar 

  81. Kurhan-Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behcet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal-S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  83. Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.

    Article  CAS  PubMed  Google Scholar 

  84. Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48(1):19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet’s disease. Mediat Inflamm. 2014;2014:195094.

    Google Scholar 

  86. Palizgir MT, Akhtari M, Mahmoudi M, Mostafaei S, Rezaeimanesh A, Akhlaghi M, et al. Macrophages from Behcet’s disease patients express decreased level of aryl hydrocarbon receptor (AHR) mRNA. Iran J Allergy Asthma Immunol. 2017;16(5):418–24.

    PubMed  Google Scholar 

  87. Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells. Clin Exp Immunol. 2014;177(2):521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xavier JM, Shahram F, Sousa I, Davatchi F, Matos M, ABSollahi BS, et al. FUT2: filling the gap between genes and environment in Behcet’s disease? Ann Rheum Dis. 2015;74(3):618–24.

    Article  CAS  PubMed  Google Scholar 

  89. Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behcet’s disease susceptibility. Nat Genet. 2017;49(3):438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol. 2002;270:169–84.

    CAS  PubMed  Google Scholar 

  91. Yavuz S, Elbir Y, Tulunay A, Eksioglu-Demiralp E, Direskeneli H. Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet’s disease etiopathogenesis. Rheumatol Int. 2008;28(5):401–6.

    Article  CAS  PubMed  Google Scholar 

  92. Do JE, Kwon SY, Park S, Lee ES. Effects of vitamin D on expression of toll-like receptors of monocytes from patients with Behcet’s disease. Rheumatology (Oxford). 2008;47(6):840–8.

    Article  CAS  Google Scholar 

  93. Nakano H, Kirino Y, Takeno M, Higashitani K, Nagai H, Yoshimi R, et al. GWAS-identified CCR1 and IL10 loci contribute to M1 macrophage-predominant inflammation in Behcet’s disease. Arthritis Res Ther. 2018;20(1):124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Inanc N, Mumcu G, Birtas E, Elbir Y, Yavuz S, Ergun T, et al. Serum mannose-binding lectin levels are decreased in Behcet’s disease and associated with disease severity. J Rheumatol. 2005;32(2):287–91.

    CAS  PubMed  Google Scholar 

  95. Mantas C, Direskeneli H, Oz D, Yavuz S, Akoglu T. IL-8 producing cells in patients with Behcet’s disease. Clin Exp Rheumatol. 2000;18(2):249–51.

    CAS  PubMed  Google Scholar 

  96. Keller M, Spanou Z, Schaerli P, Britschgi M, Yawalkar N, Seitz M, et al. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J Immunol. 2005;175(11):7678–86.

    Article  CAS  PubMed  Google Scholar 

  97. Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des. 2012;18(11):1478–93.

    Article  CAS  PubMed  Google Scholar 

  98. Melikoglu M, Kural-Seyahi E, Tascilar K, Yazici H. The unique features of vasculitis in Behcet’s syndrome. Clin Rev Allergy Immunol. 2008;35(1–2):40–6.

    Article  CAS  PubMed  Google Scholar 

  99. Lee KH, Cho HJ, Kim HS, Lee WJ, Lee S, Bang D. Activation of extracellular signal regulated kinase 1/2 in human dermal microvascular endothelial cells stimulated by anti-endothelial cell antibodies in sera of patients with Behcet’s disease. J Dermatol Sci. 2002;30(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  100. Kiraz S, Ertenli I, Ozturk MA, Haznedaroglu IC, Celik I, Calguneri M. Pathological haemostasis and “prothrombotic state” in Behcet’s disease. Thromb Res. 2002;105(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  101. Chamorro AJ, Marcos M, Hernandez-Garcia I, Calvo A, Mejia JC, Cervera R, et al. Association of allelic variants of factor V Leiden, prothrombin and methylenetetrahydrofolate reductase with thrombosis or ocular involvement in Behcet’s disease: a systematic review and meta-analysis. Autoimmun Rev. 2013;12(5):607–16.

    Article  CAS  PubMed  Google Scholar 

  102. Tokay S, Direskeneli H, Yurdakul S, Akoglu T. Anticardiolipin antibodies in Behcet’s disease: a reassessment. Rheumatology (Oxford). 2001;40(2):192–5.

    Article  CAS  Google Scholar 

  103. Haznedaroglu IC, Celik I, Buyukasik Y, Kosar A, Kirazli S, Dundar SV. Haemostasis, thrombosis, and endothelium in Behcet’s disease. Acta Haematol. 1998;99(4):236–7.

    Article  CAS  PubMed  Google Scholar 

  104. Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, et al. Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Behcet disease. Circulation. 2016;133(3):302–11.

    Article  CAS  PubMed  Google Scholar 

  105. Yazici H, Mat C, Deniz S, Iscimen A, Yurdakul S, Tuzun Y, et al. Sebum production is increased in Behcet’s syndrome and even more so in rheumatoid arthritis. Clin Exp Rheumatol. 1987;5(4):371–4.

    CAS  PubMed  Google Scholar 

  106. Buyon JP, Korchak HM, Rutherford LE, Ganguly M, Weissmann G. Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum. 1984;27(6):623–30.

    Article  CAS  PubMed  Google Scholar 

  107. Yavuz S, Ozilhan G, Elbir Y, Tolunay A, Eksioglu-Demiralp E, Direskeneli H. Activation of neutrophils by testosterone in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S46–51.

    CAS  PubMed  Google Scholar 

  108. Yavuz S, Akdeniz T, Hancer V, Bicakcigil M, Can M, Yanikkaya-Demirel G. Dual effects of testosterone in Behcet’s disease: implications for a role in disease pathogenesis. Genes Immun. 2016;17(6):335–41.

    Article  CAS  PubMed  Google Scholar 

  109. Coit P, Direskeneli H, Sawalha AH. An update on the role of epigenetics in systemic vasculitis. Curr Opin Rheumatol. 2018;30(1):4–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hughes T, Ture-Ozdemir F, Alibaz-Oner F, Coit P, Direskeneli H, Sawalha AH. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behcet’s disease. Arthritis Rheumatol. 2014;66(6):1648–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu Y, Qiu Y, Yu H, Yi S, Su W, Kijlstra A, et al. Aberrant DNA methylation of GATA binding protein 3 (GATA3), interleukin-4 (IL-4), and transforming growth factor-beta (TGF-beta) promoters in Behcet’s disease. Oncotarget. 2017;8(38):64263–72.

    PubMed  PubMed Central  Google Scholar 

  112. Alipour S, Nouri M, Khabbazi A, Samadi N, Babaloo Z, Abolhasani S, et al. Hypermethylation of IL-10 gene is responsible for its low mRNA expression in Behcet’s disease. J Cell Biochem. 2018;119(8):6614–22.

    Article  CAS  PubMed  Google Scholar 

  113. ABSi A, Khabazi A, Sakhinia E, Alipour S, Talei M, Babaloo Z. Evaluation of SOCS1 methylation in patients with Behcet’s disease. Immunol Lett. 2018;203:15–20.

    Article  CAS  Google Scholar 

  114. Alipour S, Sakhinia E, Khabbazi A, Samadi N, Babaloo Z, Azad M, et al. Methylation status of Interleukin-6 gene promoter in patients with Behcet’s disease. Reumatol Clin. 2018. pii:S1699–258X(18)30124–4.

    Google Scholar 

  115. Sawalha AH, Dozmorov MG. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis. J Autoimmun. 2016;67:76–81.

    Article  CAS  PubMed  Google Scholar 

  116. Renauer P, Coit P, Sawalha AH. Epigenetics and vasculitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;50(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou Q, Xiao X, Wang C, Zhang X, Li F, Zhou Y, et al. Decreased microRNA-155 expression in ocular Behcet’s disease but not in Vogt Koyanagi Harada syndrome. Invest Ophthalmol Vis Sci. 2012;53(9):5665–74.

    Article  CAS  PubMed  Google Scholar 

  118. Na SY, Park MJ, Park S, Lee ES. MicroRNA-155 regulates the Th17 immune response by targeting Ets-1 in Behcet’s disease. Clin Exp Rheumatol. 2016;34(6 Suppl 102):S56–63.

    PubMed  Google Scholar 

  119. Zhou Q, Hou S, Liang L, Li X, Tan X, Wei L, et al. MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behcet’s disease and Vogt-Koyanagi-Harada syndrome. Ann Rheum Dis. 2014;73(1):170–6.

    Article  CAS  PubMed  Google Scholar 

  120. Oner T, Yenmis G, Tombulturk K, Cam C, Kucuk OS, Yakicier MC, et al. Association of pre-miRNA-499 rs3746444 and pre-miRNA-146a rs2910164 polymorphisms and susceptibility to Behcet’s disease. Genet Test Mol Biomarkers. 2015;19(8):424–30.

    Article  CAS  PubMed  Google Scholar 

  121. Ugurel E, Sehitoglu E, Tuzun E, Kurtuncu M, Coban A, Vural B. Increased complexin-1 and decreased miR-185 expression levels in Behcet’s disease with and without neurological involvement. Neurol Sci. 2016;37(3):411–6.

    Article  PubMed  Google Scholar 

  122. Woo MY, Yun SJ, Cho O, Kim K, Lee ES, Park S. MicroRNAs differentially expressed in Behcet disease are involved in interleukin-6 production. J Inflamm (Lond). 2016;13:22.

    Article  CAS  Google Scholar 

  123. Zou J, Ji DN, Shen Y, Guan JL, Zheng SB. Association of reduced heme oxygenase-1 with decreased microRNA-196a2 expression in peripheral blood mononuclear cells of patients with intestinal Behcet’s disease. Ann Clin Lab Sci. 2016;46(6):675–9.

    CAS  PubMed  Google Scholar 

  124. Puccetti A, Pelosi A, Fiore PF, Patuzzo G, Lunardi C, Dolcino M. MicroRNA expression profiling in Behcet’s disease. J Immunol Res. 2018;2018:2405150.

    PubMed  PubMed Central  Google Scholar 

  125. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, et al. Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun. 2015;16(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  126. Xavier JM, Krug T, Davatchi F, Shahram F, Fonseca BV, Jesus G, et al. Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behcet’s disease susceptibility. J Mol Med. 2013;91(8):1013–23.

    Article  CAS  PubMed  Google Scholar 

  127. Puccetti A, Fiore PF, Pelosi A, Tinazzi E, Patuzzo G, Argentino G, et al. Gene expression profiling in Behcet’s disease indicates an autoimmune component in the pathogenesis of the disease and opens new avenues for targeted therapy. J Immunol Res. 2018;2018:4246965.

    PubMed  PubMed Central  Google Scholar 

  128. Bakir-Gungor B, Remmers EF, Meguro A, Mizuki N, Kastner DL, Gul A, et al. Identification of possible pathogenic pathways in Behcet’s disease using genome-wide association study data from two different populations. Eur J Hum Genet. 2015;23(5):678–87.

    Article  CAS  PubMed  Google Scholar 

  129. Hu CJ, Pan JB, Song G, Wen XT, Wu ZY, Chen S, et al. Identification of novel biomarkers for Behcet disease diagnosis using human proteome microarray approach. Mol Cell Proteomics. 2017;16(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  130. Yoshioka T, Kurokawa MS, Sato T, Nagai K, Iizuka N, Arito M, et al. Protein profiles of peripheral blood mononuclear cells as a candidate biomarker for Behcet’s disease. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S9–19.

    PubMed  Google Scholar 

  131. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76.

    Article  CAS  PubMed  Google Scholar 

  132. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    Article  CAS  PubMed  Google Scholar 

  133. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.

    Article  CAS  PubMed  Google Scholar 

  134. Torchinsky MB, Garaude J, Martin AP, Blander JM. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature. 2009;458(7234):78–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Direskeneli, H., Saruhan-Direskeneli, G. (2020). Disease Mechanisms. In: Yazici, Y., Hatemi, G., Seyahi, E., Yazici, H. (eds) Behçet Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-24131-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24131-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24130-8

  • Online ISBN: 978-3-030-24131-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics