Skip to main content

Generalized Quantum Correlations in Discrete Variable Systems

  • Chapter
  • First Online:
Quantum Correlations

Part of the book series: Springer Theses ((Springer Theses))

  • 528 Accesses

Abstract

This chapter deals with the development of our novel notion of generalized quantum correlations within discrete variable systems. In particular, we do four things: first, we discuss and motivate the need for a generalized definition of quantum correlations; second, we discuss the tool that we use to achieve our goal, that is, we review the concepts of local and global quantum coherence; third, we define nonclassicality from the perspective of quantum computation and coherence theories and establish an equivalence between the two. Finally, through a toy model, we define the notion of quantum correlations and provide analysis of its feasibility and operational significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From now on, we refer to an orthonormal PVM only as a PVM.

  2. 2.

    Note that, by Definition 1.2.47, the dimensionality of a convex set is the maximum number of affinely independent points belonging to that set.

  3. 3.

    Note that, the actual number of points required for such a decomposition is \(d^2+1\). However, one point serves as the origin which is assumed to be the zero operator. Hence, we are left with only \(d^2\) pure states.

  4. 4.

    See also the discussion following Theorem 1.2.9.

  5. 5.

    Because it can create entanglement: consider, for example, \(\Lambda _{\mathrm{CNOT}}[ | + \rangle _{\mathrm{A}}\langle + |\otimes | 0 \rangle _{\mathrm{B}}\langle 0 |]= | \Phi ^+ \rangle _{\mathrm{AB}}\langle \Phi ^+ |\) where \(| + \rangle =(| 0 \rangle +| 1 \rangle )/\sqrt{2}\) and \(| \Phi ^+ \rangle =(| 0,0 \rangle +| 1,1 \rangle )/\sqrt{2}\).

  6. 6.

    Note that, the predictions of the theory do not need to be deterministic. For instance, the quantum theory is intrinsically nondeterministic.

  7. 7.

    This corresponds to the \(\mathrm{{BPP}}\) class of computational complexity.

  8. 8.

    Corollary 3.3.1 is a result that is implicitly known to the community of quantum information and quantum computation. However, the author cannot recall an explicit and rigorous statement of this result within literature to best of his knowledge.

  9. 9.

    This can also be justified via the fact that a (non)deterministic classical computer is able to (produce) simulate every incoherent state as its output, hence, a quantum computer must be able to do so.

  10. 10.

    The abbreviation stands for deterministic quantum computation with one clean qubit.

References

  1. Henderson L, Vedral V (2001) Classical, quantum and total correlations. J Phys A Math Gen 34:6899

    Article  ADS  MathSciNet  Google Scholar 

  2. Ollivier H, Zurek WH (2001) Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett 88:017901

    Article  ADS  Google Scholar 

  3. Bennett CH, DiVincenzo DP, Fuchs CA, Mor T, Rains E, Shor PW, Smolin JA, Wootters WK (1999) Quantum nonlocality without entanglement. Phys Rev A 59:1070

    Article  ADS  MathSciNet  Google Scholar 

  4. Horodecki M, Horodecki P, Horodecki R, Oppenheim J. Sen(De) A, Sen U, Synak-Radtke B (2005) Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys Rev A 71:062307

    Google Scholar 

  5. Braunstein SL, Caves CM, Jozsa R, Linden N, Popescu S, Schack R (1999) Separability of very noisy mixed states and implications for NMR quantum computing. Phys Rev Lett 83:1054

    Article  ADS  Google Scholar 

  6. Lanyon BP, Barbieri M, Almeida MP, White AG (2008) Experimental quantum computing without entanglement. Phys Rev Lett 101:200501

    Article  ADS  Google Scholar 

  7. Datta A, Shaji A, Caves CM (2008) Quantum discord and the power of one qubit. Phys Rev Lett 100:050502

    Article  ADS  Google Scholar 

  8. Madkok V, Datta A (2013) Quantum discord as a resource in quantum communication. Int J Mod Phys B 27:1345041

    Article  ADS  MathSciNet  Google Scholar 

  9. Modi K, Brodutch A, Cable H, Paterek T, Vedral V (2012) The classical-quantum boundary for correlations: discord and related measures. Rev Mod Phys 84:1655

    Article  ADS  Google Scholar 

  10. Datta A (2012) Discord in the ranks. Nature Photonics 6:724

    Article  ADS  Google Scholar 

  11. Ferraro A, Paris MGA (2012) Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys Rev Lett 108:260403

    Google Scholar 

  12. Glauber RJ (2007) Quantum theory of optical coherence: selected papers and lectures. Wiley-VCH

    Google Scholar 

  13. Winter A, Yang D (2016) Operational resource theory of coherence. Phys Rev Lett 116:120404

    Article  ADS  Google Scholar 

  14. de Vicente JI, Streltsov A (2017) Genuine quantum coherence. J Phys A Math Theor 50:045301

    Article  ADS  MathSciNet  Google Scholar 

  15. Streltsov A, Rana S, Bera MN, Lewenstein M (2017) Towards resource theory of coherence in distributed scenarios. Phys Rev X 7:011024

    Google Scholar 

  16. Streltsov A, Adesso G, Plenio MB (2017) Colloquium: quantum coherence as a resource. Rev Mod Phys 89:041003

    Article  ADS  MathSciNet  Google Scholar 

  17. Yadin B, Ma J, Girolami D, Gu M, Vedral V (2016) Quantum processes which do not use coherence. Phys Rev X 6:041028

    Google Scholar 

  18. Meznaric S, Clark SR, Datta A (2013) Quantifying the nonclassicality of operations. Phys Rev Lett 110:070502

    Article  ADS  Google Scholar 

  19. Ã…berg J (2006) Quantifying superposition. Preprint at arXiv:0612146 [quant-ph] (2006)

  20. Napoli C, Bromley TR, Cianciaruso M, Piani M, Johnston N, Adesso G (2016) Robustness of coherence: an operational and observable measure of quantum coherence. Phys Rev Lett 116:150502

    Article  ADS  Google Scholar 

  21. Piani M, Cianciaruso M, Bromley TR, Napoli C, Johnston N, Adesso G (2016) Robustness of asymmetry and coherence of quantum states. Phys Rev A 93:042107

    Article  ADS  Google Scholar 

  22. Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary edition, 10th edn. Cambridge University Press, New York

    Google Scholar 

  23. Nielsen MA, Vidal G (2001) Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 1:76

    MathSciNet  MATH  Google Scholar 

  24. Du S, Bai Z, Guo Y (2015) Conditions for coherence transformations under incoherent operations. Phys Rev A 91:052120

    Article  ADS  Google Scholar 

  25. Baumgratz T, Cramer M, Plenio MB (2014) Quantifying coherence. Phys Rev Lett 113:140401

    Article  ADS  Google Scholar 

  26. Chitambar E, Hsieh M-H (2016) Relating the resource theories of entanglement and quantum coherence. Phys Rev Lett 117:020402

    Article  ADS  Google Scholar 

  27. Shahandeh F, Lund AP, Ralph TC (2019) Quantum correlations and global coherence in distributed quantum computing. Phys Rev A 99:052303

    Article  ADS  Google Scholar 

  28. Datta A, Flammia ST, Caves CM (2005) Entanglement and the power of one qubit. Phys Rev A 72:042316

    Article  ADS  Google Scholar 

  29. Datta A, Vidal G (2007) Role of entanglement and correlations in mixed-state quantum computation. Phys Rev A 75:042310

    Article  ADS  MathSciNet  Google Scholar 

  30. Morimae T, Fujii K, Fitzsimons JF (2014) Hardness of classically simulating the one-clean-qubit model. Phys Rev Lett 112:130502

    Article  ADS  Google Scholar 

  31. Fujii K, Kobayashi H, Morimae T, Nishimura H, Tamate S, Tani S (2014) Impossibility of classically simulating one-clean-qubit computation. Preprint at arXiv:1409.6777 [quant-ph] (2014)

  32. Fujii K, Kobayashi H, Morimae T, Nishimura H, Tamate S, Tani S (2016) Power of quantum computation with few clean qubits. In: Chatzigiannakis I, Mitzenmacher M, Rabani Y, Sangiorgi D (eds) 43rd international colloquium on automata, languages, and programming (ICALP 2016), vol 55 of Leibniz International Proceedings in Informatics (LIPIcs), 1 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany)

    Google Scholar 

  33. Knill E, Laflamme R (1998) Power of one bit of quantum information. Phys Rev Lett 81:5672

    Article  ADS  Google Scholar 

  34. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52:3457

    Article  ADS  Google Scholar 

  35. Matera JM, Egloff D, Killoran N, Plenio MB (2016) Coherent control of quantum systems as a resource theory. Quantum Sci Technol 1:01LT01

    Article  Google Scholar 

  36. Peng Y, Jiang Y, Fan H (2016) Maximally coherent states and coherence-preserving operations. Phys Rev A 93:032326

    Article  ADS  Google Scholar 

  37. Ma J, Yadin B, Girolami D, Vedral V, Gu M (2016) Converting coherence to quantum correlations. Phys Rev Lett 116:160407

    Article  ADS  Google Scholar 

  38. Girolami D, Tufarelli T, Adesso G (2013) Characterizing nonclassical correlations via local quantum uncertainty. Phys Rev Lett 110:240402

    Article  ADS  Google Scholar 

  39. Vogel W, Welsch D-G (2006) Quantum optics. Wiley-VCH

    Google Scholar 

  40. Sperling J, Agudelo E, Walmsley IA, Vogel W (2017) Quantum correlations in composite systems. J Phys B At Mol Opt Phys 50

    Article  ADS  Google Scholar 

  41. Shahandeh F, Lund AP, Ralph TC (2017) Quantum correlations in nonlocal boson sampling. Phys Rev Lett 119:120502

    Article  ADS  Google Scholar 

  42. Killoran N, Steinhoff FES, Plenio MB (2016) Converting nonclassicality into entanglement. Phys Rev Lett 116:080402

    Article  ADS  Google Scholar 

  43. Streltsov A, Singh U, Dhar HS, Bera MN, Adesso G (2015) Measuring quantum coherence with entanglement. Phys Rev Lett 115:020403

    Article  ADS  MathSciNet  Google Scholar 

  44. Tan KC, Kwon H, Park C-Y, Jeong H (2016) Unified view of quantum correlations and quantum coherence. Phys Rev A 94:022329

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Shahandeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahandeh, F. (2019). Generalized Quantum Correlations in Discrete Variable Systems. In: Quantum Correlations. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24120-9_3

Download citation

Publish with us

Policies and ethics