Skip to main content

The Resource Theory of Entanglement

  • Chapter
  • First Online:
Quantum Correlations

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we discuss the phenomena of quantum entanglement within the framework of quantum resource theories. In particular, we study entanglement witnesses and their properties. This chapter incorporates two main results on the theory of entanglement, namely, ultrafine entanglement witnessing and measurement-device-independent quantification of entanglement. The first result presents a new approach for improving standard witnessing techniques by using additional information obtained within witnessing experiments and thus, cope with unexpected experimental imperfections. The second result illustrates the use of entanglement witnessing in construction of measures of entanglement that are independent of the specific description of measurement devices similar to a Bell scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By allowing the trace to decrease we allow for operations such as subselection. However, it is very common to consider trace-preserving completely positive maps (TPCP) for which \(\sum _i \hat{A}_i^\dag \hat{A_i} = \hat{\mathbbm {1}}\), which follows from a TnIPC map via a renormalization.

  2. 2.

    See Ref. [27] for the construction instructions of one such a basis.

  3. 3.

    Note that, in general, one may require multiple POVMs for such a decomposition. As an example, consider the CHSH test in which two POVMs corresponding to measurements in x and y directions are used. However, any finite number of POVMs can be combined to form a single POVM after a suitable renormalization.

  4. 4.

    This result also holds if multiple constraint are used.

  5. 5.

    Note that the former of these maps is ultimately equivalent to the latter one. That is, if \(f_{\mathrm{pr}}:\mathcal I\rightarrow \mathcal {P}\), then for every map \(h_{\mathrm{cl}}:\mathcal I\rightarrow \mathcal I\) there exists a map \(e_{\mathrm{cl}}:\mathcal {P}\rightarrow \mathcal {P}\) such that \(f_{\mathrm{pr}}\circ h_{\mathrm{cl}}=e_{\mathrm{cl}}\circ f_{\mathrm{pr}}\).

  6. 6.

    In this protocol, the indices \(\mathrm X_0\) and \(\mathrm X\) refer to the question input and shared state Hilbert spaces, respectively, for each party \(\mathrm A\) and \(\mathrm B\), while \(\tilde{{\mathrm X}}={\mathrm X}_0{\mathrm X}\) represents the joint Hilbert space for each party.

  7. 7.

    Without loss of generality we have assumed that the shared entangled state lives in a finite dimensional Hilbert space which is d-dimensional for both parties; see Theorem 2.2.2.

  8. 8.

    Note that, the parties can perform any two-outcome local measurements, however, it turns out that the one suggested by Charlie is one of the optimal measurements possible [44]. Moreover, for Alice and Bob to be able to choose their measurement strategy, Charlie has to inform them of the test operator \(\hat{L}\).

  9. 9.

    We follow the terminology used in Ref. [45] for consistency.

  10. 10.

    In fact, this can be replaced by a generic quantum state.

  11. 11.

    Recall that, \(\mathrm A\) (\(\mathrm B\)) and \(\mathrm{A}_0\) (\(\mathrm{B}_0\)) label Alice’s (Bob’s) input Hilbert spaces for shared state and quantum questions, respectively. The joint Hilbert space of Alice thus can be labelled by \({\tilde{\mathrm{A}}}={\mathrm{A_0A}}\), and similarly for Bob, \({\tilde{\mathrm{B}}}=\mathrm{B_0B}\).

References

  1. Ballentine LE (2000) Quantum mechanics: a modern development. World Scientific Publishing Co. Pte. Ltd

    Google Scholar 

  2. Bennett CH, DiVincenzo DP, Fuchs CA, Mor T, Rains E, Shor PW, Smolin JA, Wootters WK (1999) Quantum nonlocality without entanglement. Phys Rev A 59:1070

    Article  ADS  MathSciNet  Google Scholar 

  3. Chitambar E, Leung D, Mančinska L, Ozols M, Winter A (2014) Everything you always wanted to know about LOCC (But Were Afraid to Ask). Commun Math Phys 328:303

    Article  ADS  MathSciNet  Google Scholar 

  4. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62:062314

    Article  ADS  MathSciNet  Google Scholar 

  5. Werner RF (1989) Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys Rev A 40:4277

    Article  ADS  Google Scholar 

  6. Ioannou LM, Travaglione BC (2006) Quantum separability and entanglement detection via entanglement-witness search and global optimization. Phys Rev A 73:052314

    Article  ADS  Google Scholar 

  7. Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary edition, 10th edn. Cambridge University Press, New York

    Google Scholar 

  8. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865

    Article  ADS  MathSciNet  Google Scholar 

  9. Collaboration TLS (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys 7:962

    Article  ADS  Google Scholar 

  10. Gurvits L (2003) Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing, STOC ’03, 10. ACM, New York, NY, USA

    Google Scholar 

  11. Gharibian S (2010) Strong np-hardness of the quantum separability problem. Quantum Info Comput 10:343

    MathSciNet  MATH  Google Scholar 

  12. Shahandeh F, Ringbauer M, Loredo JC, Ralph TC (2017) Ultrafine entanglement witnessing. Phys Rev Lett 118:110502

    Article  ADS  Google Scholar 

  13. Peres A (1996) Separability criterion for density matrices. Phys Rev Lett 77:1413

    Article  ADS  MathSciNet  Google Scholar 

  14. Horodecki M, Horodecki P, Horodecki R (1996) Separability of mixed states: necessary and sufficient conditions. Phys Lett A 223:1

    Article  ADS  MathSciNet  Google Scholar 

  15. Horodecki M, Horodecki P, Horodecki R (1998) Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Phys Rev Lett 80:5239

    Article  ADS  MathSciNet  Google Scholar 

  16. Simon R (2000) Peres-Horodecki separability criterion for continuous variable systems. Phys Rev Lett 84:2726

    Article  ADS  Google Scholar 

  17. Duan L-M, Giedke G, Cirac JI, Zoller P (2000) Inseparability criterion for continuous variable systems. Phys Rev Lett 84:2722

    Article  ADS  Google Scholar 

  18. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70:1895

    Article  ADS  MathSciNet  Google Scholar 

  19. Furusawa A, Sørensen JL, Braunstein SL, Fuchs CA, Kimble HJ, Polzik ES (1998) Unconditional quantum teleportation. Science 282:706–709

    Article  ADS  Google Scholar 

  20. Ralph T (2000) Quantum Information with continuous variables. In: Conference DIG 2000 international quantum electron conference. (Cat. No.00TH8504), vol. 77, 1. IEEE

    Google Scholar 

  21. Adesso G, Illuminati F (2007) Entanglement in continuous-variable systems: recent advances and current perspectives. J Phys A Math Theor 40:7821

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang X-B, Hiroshima T, Tomita A, Hayashi M (2007) Quantum information with gaussian states. Phys Reports 448:1

    Article  ADS  MathSciNet  Google Scholar 

  23. Terhal BM (2000) Bell inequalities and the separability criterion. Phys Lett A 271:319

    Article  ADS  MathSciNet  Google Scholar 

  24. Chruściński D, Sarbicki G (2014) Entanglement witnesses: construction, analysis, and classification. J Phys A Math Theor 47:483001

    Article  MathSciNet  Google Scholar 

  25. Sperling J, Vogel W (2009) Verifying continuous-variable entanglement in finite spaces. Phys Lett A 79:052313

    Google Scholar 

  26. Sperling J, Vogel W (2009) Necessary and sufficient conditions for bipartite entanglement. Phys Lett A 79:022318

    MathSciNet  Google Scholar 

  27. Lewenstein M, Kraus B, Cirac JI, Horodecki P (2000) Optimization of entanglement witnesses. Phys Rev A 62:052310

    Article  ADS  Google Scholar 

  28. Shultz F (2016) The structural physical approximation conjecture. J Math Phys 57:015218

    Article  ADS  MathSciNet  Google Scholar 

  29. Marciniak M (2010) On extremal positive maps acting between type i factors. In: Noncommutative harmon. Anal. with Appl. to Probab. II, Banach Center Publications. Institute of Mathematics Polish Academy of Sciences, Warsaw, pp 201–221

    Google Scholar 

  30. Yu S, Liu N-L (2005) Entanglement detection by local orthogonal observables. Phys Rev Lett 95:150504

    Article  ADS  MathSciNet  Google Scholar 

  31. Gholipour H, Shahandeh F (2016) Entanglement and nonclassicality: a mutual impression. Phys Rev A 93:062318

    Article  ADS  Google Scholar 

  32. Gühne O, Lütkenhaus N (2006) Nonlinear entanglement witnesses. Phys Rev Lett 96:170502

    Article  ADS  Google Scholar 

  33. Horodecki P (2003) From limits of quantum operations to multicopy entanglement witnesses and state-spectrum estimation. Phys Rev A 68:052101

    Article  ADS  MathSciNet  Google Scholar 

  34. Filip R, Mišta L (2011) Detecting quantum states with a positive wigner function beyond mixtures of gaussian states. Phys Rev Lett 106:200401

    Article  ADS  Google Scholar 

  35. Shahandeh F, Ringbauer M, Loredo JC, Ralph TC (2017) Erratum: ultrafine entanglement witnessing [phys Rev Lett 118:110502 (2017)]. Phys Rev Lett 119:269901

    Google Scholar 

  36. Kruszyńsky P, de Muynck WM (1987) Comaptibility of observables represented by positive operator-valued measures. J Math Phys 28:1761

    Article  ADS  MathSciNet  Google Scholar 

  37. Gühne O, Hyllus P, Bruss D, Ekert A, Lewenstein M, Macchiavello C, Sanpera A (2003) Experimental detection of entanglement via witness operators and local measurements. J Mod Opt 50:1079

    Article  ADS  Google Scholar 

  38. Sperling J, Vogel W (2013) Multipartite entanglement witnesses. Phys Rev Lett 111:110503

    Article  ADS  Google Scholar 

  39. Shahandeh F, Sperling J, Vogel W (2014) Structural quantification of entanglement. Phys Rev Lett 113:260502

    Article  ADS  Google Scholar 

  40. Gerke S, Sperling J, Vogel W, Cai Y, Roslund J, Treps N, Fabre C (2015) Full multipartite entanglement of frequency-comb gaussian states. Phys Rev Lett 114:050501

    Article  ADS  Google Scholar 

  41. Tóth G, Gühne O (2005) Detecting genuine multipartite entanglement with two local measurements. Phys Rev Lett 94:060501

    Article  ADS  Google Scholar 

  42. van Enk SJ, Lütkenhaus N, Kimble HJ (2007) Experimental procedures for entanglement verification. Phys Rev A 75:052318

    Article  ADS  Google Scholar 

  43. Buscemi F (2012) All entangled quantum states are nonlocal. Phys Rev Lett 108:200401

    Article  ADS  Google Scholar 

  44. Branciard C, Rosset D, Liang Y-C, Gisin N (2013) Measurement-device-independent entanglement witnesses for all entangled quantum states. Phys Rev Lett 110:060405

    Article  ADS  Google Scholar 

  45. Shahandeh F, Hall MJW, Ralph TC (2017) Measurement-device-independent approach to entanglement measures. Phys Rev Lett 118:150505

    Article  ADS  MathSciNet  Google Scholar 

  46. Rosset D, Branciard C, Gisin N, Liang Y-C (2013) Entangled states cannot be classically simulated in generalized bell experiments with quantum inputs. New J Phys 15:053025

    Article  MathSciNet  Google Scholar 

  47. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777

    Article  ADS  Google Scholar 

  48. Schrödinger E (1935) Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23:807

    Article  ADS  Google Scholar 

  49. Parker S, Bose S, Plenio MB (2000) Entanglement quantification and purification in continuous-variable systems. Phys Rev A 61:032305

    Article  ADS  Google Scholar 

  50. Vidal G (2003) Efficient classical simulation of slightly entangled quantum computations. Phys Rev Lett 91:147902

    Article  ADS  Google Scholar 

  51. Gross D, Flammia ST, Eisert J (2009) Most quantum states are too entangled to be useful as computational resources. Phys Rev Lett 102:190501

    Article  ADS  MathSciNet  Google Scholar 

  52. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed-state entanglement and quantum error correction. Phys Rev A 54:3824

    Article  ADS  MathSciNet  Google Scholar 

  53. Nielsen MA, Vidal G (2001) Majorization and the interconversion of bipartite states. Quantum Inf Comput 1:76

    MathSciNet  MATH  Google Scholar 

  54. Brandão FGSL (2005) Quantifying entanglement with witness operators. Phys Rev A 72:022310

    Article  ADS  MathSciNet  Google Scholar 

  55. Vidal G, Werner RF (2002) Computable measure of entanglement. Phys Rev A 65:032314

    Article  ADS  Google Scholar 

  56. Plenio MB (2005) Logarithmic negativity: a full entanglement monotone that is not convex. Phys Rev Lett 95:090503

    Article  ADS  Google Scholar 

  57. Vidal G (1999) Entanglement of pure states for a single copy. Phys Rev Lett 83:1046

    Article  ADS  Google Scholar 

  58. Gross C, Zibold T, Nicklas E, Estève J, Oberthaler MK (2010) Nonlinear atom interferometer surpasses classical precision limit. Nature 464:1165

    Article  ADS  Google Scholar 

  59. Eisert J, Brandão FGSL, Audenaert KMR (2007) Quantitative entanglement witnesses. New J Phys 9:46

    Article  MathSciNet  Google Scholar 

  60. Sperling J, Vogel W (2011) Determination of the schmidt number. Phys Rev A 83:042315

    Article  ADS  Google Scholar 

  61. Sperling J, Vogel W (2011) The schmidt number as a universal entanglement measure. Phys Scr 83:045002

    Article  ADS  Google Scholar 

  62. Lee S-SB, Sim H-S (2012) Quantifying mixed-state quantum entanglement by optimal entanglement witnesses. Phys Rev A 85:022325

    Article  ADS  Google Scholar 

  63. Shahandeh F, Sperling J, Vogel W (2013) Operational gaussian schmidt-number witnesses. Phys Rev A 88:062323

    Article  ADS  Google Scholar 

  64. Cavalcanti EG, Hall MJW, Wiseman HM (2013) Entanglement verification and steering when alice and bob cannot be trusted. Phys Rev A 87:032306

    Article  ADS  Google Scholar 

  65. Haapasalo E, Heinosaari T, Pellonpää JP (2012) Quantum measurements on finite dimensional systems: relabeling and mixing. Quantum Inf Process 11:1751

    Article  ADS  MathSciNet  Google Scholar 

  66. Vedral V, Plenio MB (1998) Entanglement measures and purification procedures. Phys Rev A 57:1619

    Article  ADS  Google Scholar 

  67. Nielsen MA (1999) Conditions for a class of entanglement transformations. Phys Rev Lett 83:436

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Shahandeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahandeh, F. (2019). The Resource Theory of Entanglement. In: Quantum Correlations. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24120-9_2

Download citation

Publish with us

Policies and ethics