Skip to main content

Heterogeneity of Pulmonary Stem Cells

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1169))

Abstract

Epithelial stem cells reside within multiple regions of the lung where they renew various region-specific cells. In addition, there are multiple routes of regeneration after injury through built-in heterogeneity within stem cell populations and through a capacity for cellular plasticity among differentiated cells. These processes are important facets of respiratory tissue resiliency and organism survival. However, this regenerative capacity is not limitless, and repetitive or chronic injuries, environmental stresses, or underlying factors of disease may ultimately lead to or contribute to tissue remodeling and end-stage lung disease. This chapter will review stem cell heterogeneity among pulmonary epithelia in the lower respiratory system, discuss recent findings that may challenge long-held scientific paradigms, and identify several clinically relevant research opportunities for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montoro DT et al (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–324. https://doi.org/10.1038/s41586-018-0393-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Plasschaert LW et al (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–381. https://doi.org/10.1038/s41586-018-0394-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ (2018) Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359:1118–1123. https://doi.org/10.1126/science.aam6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu M et al (2019) Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci Rep 9(1):1971

    Article  PubMed  PubMed Central  Google Scholar 

  5. Treutlein B et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375. https://doi.org/10.1038/nature13173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y et al (2016) Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1:e90558. https://doi.org/10.1172/jci.insight.90558

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zuo WL et al (2018) Ontogeny and biology of human small airway epithelial club cells. Am J Respir Crit Care Med 198(11):1375–1388. https://doi.org/10.1164/rccm.201710-2107OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie T et al (2018) Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 22:3625–3640. https://doi.org/10.1016/j.celrep.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller AJ et al (2018) Basal stem cell fate specification is mediated by SMAD signaling in the developing human lung. bioRxiv. 2018:461103. https://doi.org/10.1101/461103

    Google Scholar 

  10. Watson JK et al (2015) Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep 12:90–101. https://doi.org/10.1016/j.celrep.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pardo-Saganta A et al (2015) Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 16:184–197. https://doi.org/10.1016/j.stem.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruiz Garcia S et al (2018) Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration. Cold Spring Harbor Laboratory: bioRxiv. https://doi.org/10.1101/451807

  13. Tata PR et al (2013) Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503:218–223. https://doi.org/10.1038/nature12777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okuda K et al (2018) Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med 199(6):715–727. https://doi.org/10.1164/rccm.201804-0734OC

    Article  Google Scholar 

  15. Teixeira VH et al (2013) Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. elife 2:e00966. https://doi.org/10.7554/eLife.00966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rock JR et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106:12771–12775. https://doi.org/10.1073/pnas.0906850106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556. https://doi.org/10.1242/dmm.006031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wansleeben C, Barkauskas CE, Rock JR, Hogan BL (2013) Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol 2:131–148. https://doi.org/10.1002/wdev.58

    Article  CAS  PubMed  Google Scholar 

  19. Lynch TJ, Engelhardt JF (2014) Progenitor cells in proximal airway epithelial development and regeneration. J Cell Biochem 115:1637–1645. https://doi.org/10.1002/jcb.24834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghosh M et al (2013) Human tracheobronchial basal cells. Normal versus remodeling/repairing phenotypes in vivo and in vitro. Am J Respir Cell Mol Biol 49:1127–1134. https://doi.org/10.1165/rcmb.2013-0049OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh M et al (2018) Exhaustion of airway basal progenitor cells in early and established chronic obstructive pulmonary disease. Am J Respir Crit Care Med 197:885–896. https://doi.org/10.1164/rccm.201704-0667OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swatek AM et al (2018) Depletion of airway submucosal glands and TP63(+)KRT5(+) basal cells in obliterative bronchiolitis. Am J Respir Crit Care Med 197:1045–1057. https://doi.org/10.1164/rccm.201707-1368OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM (2011) Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 22:4068–4078. https://doi.org/10.1091/mbc.E10-08-0703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papafotiou G et al (2016) KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun 7:11914. https://doi.org/10.1038/ncomms11914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cole BB et al (2010) Tracheal basal cells: a facultative progenitor cell pool. Am J Pathol 177:362–376. https://doi.org/10.2353/ajpath.2010.090870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghosh M et al (2011) Context-dependent differentiation of multipotential keratin 14-expressing tracheal basal cells. Am J Respir Cell Mol Biol 45:403–410. https://doi.org/10.1165/rcmb.2010-0283OC

    Article  CAS  PubMed  Google Scholar 

  27. Lynch TJ et al (2016) Wnt signaling regulates airway epithelial stem cells in adult murine submucosal glands. Stem Cells 34:2758–2771. https://doi.org/10.1002/stem.2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S (2009) An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 4:e5623. https://doi.org/10.1371/journal.pone.0005623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh M et al (2013) Regulation of trachebronchial tissue-specific stem cell pool size. Stem Cells 31:2767–2778. https://doi.org/10.1002/stem.1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O (2015) Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci Rep 5:8163. https://doi.org/10.1038/srep08163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herfs M et al (2012) Proinflammatory cytokines induce bronchial hyperplasia and squamous metaplasia in smokers: implications for chronic obstructive pulmonary disease therapy. Am J Respir Cell Mol Biol 47:67–79. https://doi.org/10.1165/rcmb.2011-0353OC

    Article  CAS  PubMed  Google Scholar 

  32. Smirnova NF et al (2016) Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir Res 17:83. https://doi.org/10.1186/s12931-016-0404-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghosh M, Ahmad S, White CW, Reynolds SD (2017) Transplantation of airway epithelial stem/progenitor cells: a future for cell-based therapy. Am J Respir Cell Mol Biol 56:1–10. https://doi.org/10.1165/rcmb.2016-0181MA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayes D Jr et al (2018) Cell therapy for cystic fibrosis lung disease: regenerative basal cell amplification. Stem Cells Transl Med 8(3):225–235. https://doi.org/10.1002/sctm.18-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitson BA et al (2007) Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant 26:1004–1011. https://doi.org/10.1016/j.healun.2007.07.018

    Article  PubMed  Google Scholar 

  36. Widdicombe JH, Wine JJ (2015) Airway gland structure and function. Physiol Rev 95:1241–1319. https://doi.org/10.1152/physrev.00039.2014

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Driskell RR, Engelhardt JF (2004) Airway glandular development and stem cells. Curr Top Dev Biol 64:33–56. https://doi.org/10.1016/S0070-2153(04)64003-8

    Article  CAS  PubMed  Google Scholar 

  38. Hegab AE et al (2012) Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med 1:719–724. https://doi.org/10.5966/sctm.2012-0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hegab AE et al (2011) Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 29:1283–1293. https://doi.org/10.1002/stem.680

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hegab AE et al (2014) Aldehyde dehydrogenase activity enriches for proximal airway basal stem cells and promotes their proliferation. Stem Cells Dev 23:664–675. https://doi.org/10.1089/scd.2013.0295

    Article  CAS  PubMed  Google Scholar 

  41. Khansaheb M et al (2011) Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 300:L370–L379. https://doi.org/10.1152/ajplung.00372.2010

    Article  CAS  PubMed  Google Scholar 

  42. Meyrick B, Reid L (1970) Ultrastructure of cells in the human bronchial submucosal glands. J Anat 107:281–299

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyrick B, Sturgess JM, Reid L (1969) A reconstruction of the duct system and secretory tubules of the human bronchial submucosal gland. Thorax 24:729–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson PJ, Lynch TJ, Engelhardt JF (2017) Multipotent myoepithelial progenitor cells are born early during airway submucosal gland development. Am J Respir Cell Mol Biol 56:716–726. https://doi.org/10.1165/rcmb.2016-0304OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch TJ et al (2018) Submucosal gland myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell 22:653–667.e655. https://doi.org/10.1016/j.stem.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tata A et al (2018) Myoepithelial cells of submucosal glands can function as reserve stem cells to regenerate airways after injury. Cell Stem Cell 22:668–683.e666. https://doi.org/10.1016/j.stem.2018.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24:662–670. https://doi.org/10.1165/ajrcmb.24.6.4217

    Article  CAS  PubMed  Google Scholar 

  48. Liu X, Driskell RR, Engelhardt JF (2006) Stem cells in the lung. Methods Enzymol 419:285–321. https://doi.org/10.1016/S0076-6879(06)19012-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Innes BA, Dorin JR (2001) Submucosal gland distribution in the mouse has a genetic determination localized on chromosome 9. Mamm Genome 12:124–128

    Article  CAS  PubMed  Google Scholar 

  50. Nettesheim P, Martin DH (1970) Appearance of glandlike structures in the tracheobronchial tree of aging mice. J Natl Cancer Inst 44:687–693

    CAS  PubMed  Google Scholar 

  51. Wansleeben C, Bowie E, Hotten DF, Yu YR, Hogan BL (2014) Age-related changes in the cellular composition and epithelial organization of the mouse trachea. PLoS One 9:e93496. https://doi.org/10.1371/journal.pone.0093496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hajighasemi-Ossareh M et al (2013) Distribution and size of mucous glands in the ferret tracheobronchial tree. Anat Rec (Hoboken) 296:1768–1774. https://doi.org/10.1002/ar.22783

    Article  Google Scholar 

  53. Kelly FL et al (2012) Epithelial Clara cell injury occurs in bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant 12:3076–3084. https://doi.org/10.1111/j.1600-6143.2012.04201.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilpin SE et al (2012) Altered progenitor cell and cytokine profiles in bronchiolitis obliterans syndrome. J Heart Lung Transplant 31:222–228. https://doi.org/10.1016/j.healun.2011.11.012

    Article  PubMed  Google Scholar 

  55. Jeffery PK, Gaillard D, Moret S (1992) Human airway secretory cells during development and in mature airway epithelium. Eur Respir J 5:93–104

    CAS  PubMed  Google Scholar 

  56. Jeffery PK, Li D (1997) Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J 10:1655–1662

    Article  CAS  PubMed  Google Scholar 

  57. Rogers AV, Dewar A, Corrin B, Jeffery PK (1993) Identification of serous-like cells in the surface epithelium of human bronchioles. Eur Respir J 6:498–504

    CAS  PubMed  Google Scholar 

  58. Ray S et al (2016) Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Reports 7:817–825. https://doi.org/10.1016/j.stemcr.2016.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zuo W et al (2015) p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature 517:616–620. https://doi.org/10.1038/nature13903

    Article  CAS  PubMed  Google Scholar 

  60. Vaughan AE et al (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517:621–625. https://doi.org/10.1038/nature14112

    Article  CAS  PubMed  Google Scholar 

  61. Guha A, Deshpande A, Jain A, Sebastiani P, Cardoso WV (2017) Uroplakin 3a(+) cells are a distinctive population of epithelial progenitors that contribute to airway maintenance and post-injury repair. Cell Rep 19:246–254. https://doi.org/10.1016/j.celrep.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  62. Barkauskas CE et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025–3036. https://doi.org/10.1172/JCI68782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zacharias WJ et al (2018) Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555:251–255. https://doi.org/10.1038/nature25786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jain R et al (2015) Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun 6:6727. https://doi.org/10.1038/ncomms7727

    Article  CAS  PubMed  Google Scholar 

  65. Ota C et al (2018) Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep 8:12983. https://doi.org/10.1038/s41598-018-31214-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao E et al (2018) Notch signaling controls transdifferentiation of pulmonary neuroendocrine cells in response to lung injury. Stem Cells 36:377–391. https://doi.org/10.1002/stem.2744

    Article  CAS  PubMed  Google Scholar 

  67. Noguchi M, Sumiyama K, Morimoto M (2015) Directed migration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies. Cell Rep 13:2679–2686. https://doi.org/10.1016/j.celrep.2015.11.058

    Article  CAS  PubMed  Google Scholar 

  68. Rawlins EL et al (2009) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4:525–534. https://doi.org/10.1016/j.stem.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boers JE, Ambergen AW, Thunnissen FB (1999) Number and proliferation of Clara cells in normal human airway epithelium. Am J Respir Crit Care Med 159:1585–1591. https://doi.org/10.1164/ajrccm.159.5.9806044

    Article  CAS  PubMed  Google Scholar 

  70. Chen G et al (2014) Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am J Respir Crit Care Med 189:301–313. https://doi.org/10.1164/rccm.201306-1181OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doherty T, Broide D (2007) Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol 19:676–680. https://doi.org/10.1016/j.coi.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  72. Kuperman DA et al (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8:885–889. https://doi.org/10.1038/nm734

    Article  CAS  PubMed  Google Scholar 

  73. Reid AT et al (2018) Persistent induction of goblet cell differentiation in the airways: therapeutic approaches. Pharmacol Ther 185:155–169. https://doi.org/10.1016/j.pharmthera.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  74. Ordonez CL et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163:517–523. https://doi.org/10.1164/ajrccm.163.2.2004039

    Article  CAS  PubMed  Google Scholar 

  75. Kim V et al (2015) Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS One 10:e0116108. https://doi.org/10.1371/journal.pone.0116108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Voynow JA, Fischer BM, Roberts BC, Proia AD (2005) Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med 172:1013–1018. https://doi.org/10.1164/rccm.200410-1398OC

    Article  PubMed  Google Scholar 

  77. Chen H et al (2012) Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells 30:1948–1960. https://doi.org/10.1002/stem.1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seidel V et al (2013) Distribution and morphology of Clara cells in common marmosets (Callithrix jacchus). J Med Primatol 42:79–88. https://doi.org/10.1111/jmp.12038

    Article  PubMed  Google Scholar 

  79. Pack RJ, Al-Ugaily LH, Morris G (1981) The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study. J Anat 132:71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Plopper CG et al (1983) Comparison of nonciliated tracheal epithelial cells in six mammalian species: ultrastructure and population densities. Exp Lung Res 5:281–294

    Article  CAS  PubMed  Google Scholar 

  81. Pack RJ, Al-Ugaily LH, Morris G, Widdicombe JG (1980) The distribution and structure of cells in the tracheal epithelium of the mouse. Cell Tissue Res 208:65–84

    Article  CAS  PubMed  Google Scholar 

  82. Widdicombe JG, Pack RJ (1982) The Clara cell. Eur J Respir Dis 63:202–220

    CAS  PubMed  Google Scholar 

  83. Van Winkle LS, Buckpitt AR, Nishio SJ, Isaac JM, Plopper CG (1995) Cellular response in naphthalene-induced Clara cell injury and bronchiolar epithelial repair in mice. Am J Phys 269:L800–L818. https://doi.org/10.1152/ajplung.1995.269.6.L800

    Article  Google Scholar 

  84. Stripp BR, Maxson K, Mera R, Singh G (1995) Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Phys 269:L791–L799. https://doi.org/10.1152/ajplung.1995.269.6.L791

    Article  CAS  Google Scholar 

  85. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278. https://doi.org/10.1016/S0002-9440(10)64727-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD (2015) Vagal sensory neuron subtypes that differentially control breathing. Cell 161:622–633. https://doi.org/10.1016/j.cell.2015.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681. https://doi.org/10.1165/ajrcmb.24.6.4498

    Article  CAS  PubMed  Google Scholar 

  88. Meuwissen R et al (2003) Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:181–189

    Article  CAS  PubMed  Google Scholar 

  89. Park KS et al (2011) Characterization of the cell of origin for small cell lung cancer. Cell Cycle 10:2806–2815. https://doi.org/10.4161/cc.10.16.17012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song H et al (2012) Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A 109:17531–17536. https://doi.org/10.1073/pnas.1207238109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuo CS, Krasnow MA (2015) Formation of a neurosensory organ by epithelial cell slithering. Cell 163:394–405. https://doi.org/10.1016/j.cell.2015.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507:190–194. https://doi.org/10.1038/nature12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108:E1475–E1483. https://doi.org/10.1073/pnas.1117988108

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nikolic MZ, Sun D, Rawlins EL (2018) Human lung development: recent progress and new challenges. Development 145(16):pii: dev163485. https://doi.org/10.1242/dev.163485

    Article  CAS  Google Scholar 

  95. Aguilar PR, Michelson AP, Isakow W (2016) Obliterative bronchiolitis. Transplantation 100:272–283. https://doi.org/10.1097/TP.0000000000000892

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpaj R. Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lynch, T.J., Ievlev, V., Parekh, K.R. (2019). Heterogeneity of Pulmonary Stem Cells. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_6

Download citation

Publish with us

Policies and ethics