Skip to main content

Hematopoietic Stem Cell Heterogeneity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1169))

Abstract

Hematopoietic stem cells (HSCs) maintain lifelong production of mature blood cells and regenerate the hematopoietic system after cytotoxic injury. Use of expanding cell surface marker panels and advanced functional analyses have revealed the presence of several immunophenotypically different HSC subsets with distinct self-renewal and repopulating capacity and bias toward selective lineage differentiation. This chapter summarizes current understanding of the phenotypic and functional heterogeneity within the HSC pool, with emphasis on the immunophenotypes and functional features of several known HSC subsets, and their roles in steady-state and emergency hematopoiesis, and in aging. The chapter also highlights some of the future research directions to elucidate further the biology and function of different HSC subsets in health and disease states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    Article  CAS  PubMed  Google Scholar 

  2. Jurecic R, Van NT, Belmont JW (1993) Enrichment and functional characterization of Sca-1+WGA+, Lin-WGA+, Lin-Sca-1+, and Lin-Sca-1+WGA+ bone marrow cells from mice with an Ly-6a haplotype. Blood 82(9):2673–2683

    CAS  PubMed  Google Scholar 

  3. Li CL, Johnson GR (1992) Long-term hemopoietic repopulation by Thy-1lo, Lin-, Ly6A/E+ cells. Exp Hematol 20(11):1309–1315

    CAS  PubMed  Google Scholar 

  4. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Nishikawa S, Miura Y, Suda T (1991) Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78(7):1706–1712

    CAS  PubMed  Google Scholar 

  5. Spangrude GJ (1989) Enrichment of murine haemopoietic stem cells: diverging roads. Immunol Today 10(10):344–350

    Article  CAS  PubMed  Google Scholar 

  6. Spangrude GJ, Scollay R (1990) A simplified method for enrichment of mouse hematopoietic stem cells. Exp Hematol 18(8):920–926

    CAS  PubMed  Google Scholar 

  7. Spangrude GJ, Smith L, Uchida N, Ikuta K, Heimfeld S, Friedman J, Weissman IL (1991) Mouse hematopoietic stem cells. Blood 78(6):1395–1402

    CAS  PubMed  Google Scholar 

  8. Weissman IL, Heimfeld S, Spangrude G (1989) Haemopoietic stem cell purification. Immunol Today 10(6):184–185

    Article  CAS  PubMed  Google Scholar 

  9. Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A 89(7):2804–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A 94(10):5320–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray L, DiGiusto D, Chen B, Chen S, Combs J, Conti A, Galy A, Negrin R, Tricot G, Tsukamoto A (1994) Analysis of human hematopoietic stem cell populations. Blood Cells 20(2–3):364–369

    CAS  PubMed  Google Scholar 

  13. Murray L, Chen B, Galy A, Chen S, Tushinski R, Uchida N, Negrin R, Tricot G, Jagannath S, Vesole D et al (1995) Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 85(2):368–378

    CAS  PubMed  Google Scholar 

  14. Guezguez B, Campbell CJ, Boyd AL, Karanu F, Casado FL, Di Cresce C, Collins TJ, Shapovalova Z, Xenocostas A, Bhatia M (2013) Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13(2):175–189

    Article  CAS  PubMed  Google Scholar 

  15. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333(6039):218–221

    Article  CAS  PubMed  Google Scholar 

  16. Reckzeh K, Kizilkaya H, Helbo AS, Alrich ME, Deslauriers AG, Grover A, Rapin N, Asmar F, Grønbæk K, Porse B, Borregaard N, Vestweber D, Nerlov C, Theilgaard-Mönch K (2018) Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin. Blood Adv 2(13):1628–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sitnicka E, Buza-Vidas N, Larsson S, Nygren JM, Liuba K, Jacobsen SE (2003) Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood 102(3):881–886

    Article  CAS  PubMed  Google Scholar 

  18. Uchida N, Fleming WH, Alpern EJ, Weissman IL (1993) Heterogeneity of hematopoietic stem cells. Curr Opin Immunol 5(2):177–184

    Article  CAS  PubMed  Google Scholar 

  19. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6(1):48–58

    Article  CAS  PubMed  Google Scholar 

  21. Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N, Ma E, Mader H, Rowe K, Day C, Treloar D, Brinkman RR, Eaves CJ (2012) Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10(3):273–283

    Article  CAS  PubMed  Google Scholar 

  22. Copley MR, Beer PA, Eaves CJ (2012) Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10(6):690–697

    Article  CAS  PubMed  Google Scholar 

  23. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1(2):218–229

    Article  CAS  PubMed  Google Scholar 

  24. Hock H (2010) Some hematopoietic stem cells are more equal than others. J Exp Med 207:1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raaijmakers MH, Scadden DT (2008) Divided within: heterogeneity within adult stem cell pools. Cell 135:1006–1008

    Article  CAS  PubMed  Google Scholar 

  29. Schroeder T (2010) Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6:203–207

    Article  CAS  PubMed  Google Scholar 

  30. Crisan M, Dzierzak E (2016) The many faces of hematopoietic stem cell heterogeneity. Development 143(24):4571–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adolfsson J et al (2001) Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    Article  CAS  PubMed  Google Scholar 

  32. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  CAS  PubMed  Google Scholar 

  34. Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45(6):917–927

    Article  CAS  PubMed  Google Scholar 

  35. Lemischka IR (1992) What we have learned from retroviral marking of hematopoietic stem cells. Curr Top Microbiol Immunol 177:59–71

    CAS  PubMed  Google Scholar 

  36. Liu L, Papa EF, Dooner MS, Machan JT, Johnson KW, Goldberg LR, Quesenberry PJ, Colvin GA (2012) Homing and long-term engraftment of long- and short-term renewal hematopoietic stem cells. PLoS One 7(2):e31300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29:928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McKenzie JL, Gan OI, Doedens M, Dick JE (2005) Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106(4):1259–1261

    Article  CAS  PubMed  Google Scholar 

  39. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1(8):661–673

    Article  CAS  PubMed  Google Scholar 

  40. Nakauchi H, Sudo K, Ema H (2001) Quantitative assessment of the stem cell self-renewal capacity. Ann N Y Acad Sci 938:18–24

    Article  CAS  PubMed  Google Scholar 

  41. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    Article  CAS  PubMed  Google Scholar 

  42. Randall TD, Lund FE, Howard MC, Weissman IL (1996) Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 87(10):4057–4067

    CAS  PubMed  Google Scholar 

  43. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87(22):8736–8740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wagers AJ, Weissman IL (2006) Differential expression of alpha2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1(lo)c-kit+ Sca-1+ hematopoietic stem cells. Stem Cells 24(4):1087–1094

    Article  CAS  PubMed  Google Scholar 

  45. Yang L et al (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    Article  CAS  PubMed  Google Scholar 

  46. Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sonoda Y (2017) CD34 antigen and the MPL receptor expression defines a novel class of human cord blood-derived primitive hematopoietic stem cells. Cell Transplant 26(6):1043–1058

    Article  PubMed  PubMed Central  Google Scholar 

  47. Matsuoka S, Ebihara Y, Xu M, Ishii T, Sugiyama D, Yoshino H, Ueda T, Manabe A, Tanaka R, Ikeda Y, Nakahata T, Tsuji K (2001) CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages. Blood 97(2):419–425

    Article  CAS  PubMed  Google Scholar 

  48. Ogawa M, Tajima F, Ito T, Sato T, Laver JH, Deguchi T (2001) CD34 expression by murine hematopoietic stem cells. Developmental changes and kinetic alterations. Ann N Y Acad Sci 938:139–145

    Article  CAS  PubMed  Google Scholar 

  49. Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2554

    CAS  PubMed  Google Scholar 

  50. Dao MA, Arevalo J, Nolta JA (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101(1):112–118

    Article  CAS  PubMed  Google Scholar 

  51. Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M (2003) Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol 31(5):406–412

    Article  CAS  PubMed  Google Scholar 

  52. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, Sexl V, Bock C, Baccarini M (2018) An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell 22(6):879–892.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–823

    Article  CAS  PubMed  Google Scholar 

  54. Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C, Essers MA, Macdonald HR, Trumpp A (2007) Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106:64–75

    Article  CAS  PubMed  Google Scholar 

  55. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura-Ishizu A, Takizawa H, Suda T (2014) The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141(24):4656–4666

    Article  CAS  PubMed  Google Scholar 

  57. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MA, Williams DA, Trumpp A, Milsom MD (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520(7548):549–552

    Article  CAS  PubMed  Google Scholar 

  58. Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103(11):4111–4118

    Article  CAS  PubMed  Google Scholar 

  59. Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, Moore S, Carella C, Matsuoka S, Bouriez Jones T, Chowdhury O, Stenson L, Lutteropp M, Green JC, Facchini R, Boukarabila H, Grover A, Gambardella A, Thongjuea S, Carrelha J, Tarrant P, Atkinson D, Clark SA, Nerlov C, Jacobsen SE (2013) Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502(7470):232–236

    Article  CAS  PubMed  Google Scholar 

  60. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107(6):2311–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gekas C, Graf T (2013) CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121(22):4463–4472

    Article  CAS  PubMed  Google Scholar 

  62. Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, Boukarabila H, Grasso F, Gambardella A, Grover A, Högstrand K, Lord AM, Sanjuan-Pla A, Woll PS, Nerlov C, Jacobsen SEW (2018) Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554(7690):106–111

    Article  CAS  PubMed  Google Scholar 

  63. Shin JY, Hu W, Naramura M, Park CY (2014) High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 211(2):217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Göttgens B (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16(6):712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woolthuis CM, Park CY (2016) Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 127(10):1242–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Assinger A (2014) Platelets and infection – an emerging role of platelets in viral infection. Front Immunol 5:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeaman MR (2014) Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 12(6):426–437

    Article  CAS  PubMed  Google Scholar 

  68. Matsuoka Y, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sasaki Y, Sonoda Y (2015) Human cord blood-derived primitive CD34-negative hematopoietic stem cells (HSCs) are myeloid-biased long-term repopulating HSCs. Blood Cancer J 5:e290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y (2018) A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 9(1):2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borot F, Lin CS, Snoeck HW, Mukherjee S, Wang TC (2017) Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell 21(6):747–760.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, Friedman RA, Middelhoff M, Ding H, Tailor YH, Wang ALE, Liu H, Niu Z, Wang H, Jiang Z, Renders S, Ho SH, Shah SV, Tishchenko P, Chang W, Swayne TC, Munteanu L, Califano A, Takahashi R, Nagar KK, Renz BW, Worthley DL, Westphalen CB, Hayakawa Y, Asfaha S, Borot F, Lin CS, Snoeck HW, Mukherjee S, Wang TC (2017) Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell 21(6):747–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS (2018) Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell 44(5):634–641.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boiko JR, Borghesi L (2012) Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 57(1):1–8

    Article  CAS  PubMed  Google Scholar 

  74. Burberry A, Zeng MY, Ding L, Wicks I, Inohara N, Morrison SJ, Núñez G (2014) Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and toll-like receptor signaling. Cell Host Microbe 15(6):779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glatman Zaretsky A, Engiles JB, Hunter CA (2014) Infection-induced changes in hematopoiesis. J Immunol 192(1):27–33

    Article  CAS  PubMed  Google Scholar 

  76. King KY, Goodell MA (2011) Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 11(10):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection. PLoS One 6(12):e28669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14(5):302–314

    Article  CAS  PubMed  Google Scholar 

  79. Megías J, Yáñez A, Moriano S, O’Connor JE, Gozalbo D, Gil ML (2012) Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 30(7):1486–1495

    Article  CAS  PubMed  Google Scholar 

  80. Schuettpelz LG, Link DC (2013) Regulation of hematopoietic stem cell activity by inflammation. Front Immunol 4:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yáñez A, Goodridge HS, Gozalbo D, Gil ML (2013) TLRs control hematopoiesis during infection. Eur J Immunol 43(10):2526–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boettcher S, Manz MG (2017) Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 38(5):345–357

    Article  CAS  PubMed  Google Scholar 

  83. Welner RS, Kincade PW (2014) 9-1-1: HSCs respond to emergency calls. Cell Stem Cell 14(4):415–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, Humphrey MB, Yang Q, Borghesi LA, Kincade PW (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186(9):5367–5375

    Article  CAS  PubMed  Google Scholar 

  85. Hirche C, Frenz T, Haas SF, Döring M, Borst K, Tegtmeyer PK, Brizic I, Jordan S, Keyser K, Chhatbar C, Pronk E, Lin S, Messerle M, Jonjic S, Falk CS, Trumpp A, Essers MAG, Kalinke U (2017) Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo. Cell Rep 19(11):2345–2356

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi H, Kobayashi CI, Nakamura-Ishizu A, Karigane D, Haeno H, Yamamoto KN, Sato T, Ohteki T, Hayakawa Y, Barber GN, Kurokawa M, Suda T, Takubo K (2015) Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING. Cell Rep 11(1):71–84

    Article  CAS  PubMed  Google Scholar 

  87. Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C, Jacobs K, Ahuja AK, Lopes M, Hausmann A, Hardt WD, Gomariz Á, Nombela-Arrieta C, Manz MG (2017) Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21(2):225–240.e5

    Article  CAS  PubMed  Google Scholar 

  88. Matatall KA, Shen CC, Challen GA, King KY (2014) Type II interferon promotes differentiation of myeloid-biased hematopoietic stem cells. Stem Cells 32(11):3023–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast ÁM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MA (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17(4):422–434

    Article  CAS  PubMed  Google Scholar 

  90. Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22(2):157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gazit R, Weissman IL, Rossi DJ (2008) Hematopoietic stem cells and the aging hematopoietic system. Semin Hematol 45:218–224

    Article  PubMed  Google Scholar 

  93. Pang WW, Schrier SL, Weissman IL (2017) Age-associated changes in human hematopoietic stem cells. Semin Hematol 54(1):39–42

    Article  PubMed  Google Scholar 

  94. Shlush LI (2018) Age-related clonal hematopoiesis. Blood 131(5):496–504

    Article  CAS  PubMed  Google Scholar 

  95. Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    Article  CAS  PubMed  Google Scholar 

  97. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A, Gambardella A, Macaulay I, Mancini E, Luis TC, Mead A, Jacobsen SE, Nerlov C (2016) Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun 7:11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  CAS  PubMed  Google Scholar 

  100. Wang JW, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23:532–536

    Article  CAS  PubMed  Google Scholar 

  101. Leins H, Mulaw M, Eiwen K, Sakk V, Liang Y, Denkinger M, Geiger H, Schirmbeck R (2018) Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132(6):565–576

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kong Y, Pioli PD, Montecino-Rodriguez E, Casero D, Dorshkind K (2018) Lymphoid biased hematopoietic stem cells acquire a myeloid pattern of gene expression with age. J Immunol 200(1 Supplement):103.6

    Google Scholar 

  103. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108(50):20012–20017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beerman I (2017) Accumulation of DNA damage in the aged hematopoietic stem cell compartment. Semin Hematol 54(1):12–18

    Article  PubMed  Google Scholar 

  105. Busque L, Buscarlet M, Mollica L, Levine RL (2018) Concise review: age-related clonal hematopoiesis: stem cells tempting the devil. Stem Cells 36(9):1287–1294

    Article  PubMed  PubMed Central  Google Scholar 

  106. Elias HK, Bryder D, Park CY (2017) Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin Hematol 54(1):4–11

    Article  PubMed  Google Scholar 

  107. Kramer A, Challen GA (2017) The epigenetic basis of hematopoietic stem cell aging. Semin Hematol 54(1):19–24

    Article  PubMed  Google Scholar 

  108. Latchney SE, Calvi LM (2017) The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 54(1):25–32

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Jurecic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurecic, R. (2019). Hematopoietic Stem Cell Heterogeneity. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_10

Download citation

Publish with us

Policies and ethics