Skip to main content

Heterogeneity of Neural Stem Cells in the Ventricular–Subventricular Zone

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Different Organs

Abstract

In this chapter, heterogeneity is explored in the context of the ventricular–subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular–subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  CAS  PubMed  Google Scholar 

  2. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  CAS  PubMed  Google Scholar 

  3. Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A (2019) Neural stem cell niche heterogeneity. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2019.01.005

  4. Purves D (2012) Neuroscience. Sinauer Associates, Sunderland, MA

    Google Scholar 

  5. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    Article  CAS  PubMed  Google Scholar 

  6. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2007) Neural stem and progenitor cells in cortical development. Novartis Found Symp 288:59–73. discussion 73–8, 96–8

    CAS  PubMed  Google Scholar 

  8. Fentress JC, Stanfield BB, Cowan WM (1981) Observation on the development of the striatum in mice and rats. Anat Embryol 163:275–298

    Article  CAS  Google Scholar 

  9. Pilz GA, Shitamukai A, Reillo I, Pacary E, Schwausch J, Stahl R, Ninkovic J, Snippert HJ, Clevers H, Godinho L, Guillemot F, Borrell V, Matsuzaki F, Gotz M (2013) Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nat Commun 4:2125

    Article  CAS  PubMed  Google Scholar 

  10. Smart IH (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J Anat 121:71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross ME (2011) Cell cycle regulation and interneuron production. Dev Neurobiol 71:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101:3196–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  14. Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161:1644–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587

    Article  PubMed  Google Scholar 

  19. Redmond SA, Figueres-Oñate M, Obernier K, Nascimento MA, Parraguez JI, López-Mascaraque L, Fuentealba LC, Alvarez-Buylla A (2019) Development of ependymal and postnatal neural stem cells and their origin from a common embryonic progenitor. Cell Rep 27(2):429–441.e3. https://doi.org/10.1016/j.celrep.2019.01.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ortiz-Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, Clavreul S, Lalioti ME, Taraviras S, Hippenmeyer S, Livet J, Meunier A, Genovesio A, Spassky N (2019) Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the geminin family members. Neuron 102(1):159–172.e7. https://doi.org/10.1016/j.neuron.2019.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  CAS  PubMed  Google Scholar 

  22. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96:11619–11624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27:6878–6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ventura RE, Goldman JE (2007) Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci 27:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willaime-Morawek S, Seaberg RM, Batista C, Labbe E, Attisano L, Gorski JA, Jones KR, Kam A, Morshead CM, van der Kooy D (2006) Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J Cell Biol 175:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willaime-Morawek S, van der Kooy D (2008) Cortex- and striatum-derived neural stem cells produce distinct progeny in the olfactory bulb and striatum. Eur J Neurosci 27:2354–2362

    Article  PubMed  Google Scholar 

  28. Young KM, Fogarty M, Kessaris N, Richardson WD (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ, Ding L, Lopez-Cruz A, Saur D, Anderson SA, Huang K, Shi SH (2011) Clonal production and organization of inhibitory interneurons in the neocortex. Science 334:480–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ciceri G, Dehorter N, Sols I, Huang ZJ, Maravall M, Marin O (2013) Lineage-specific laminar organization of cortical GABAergic interneurons. Nat Neurosci 16:1199–1210

    Article  CAS  PubMed  Google Scholar 

  31. Harwell CC, Fuentealba LC, Gonzalez-Cerrillo A, Parker PR, Gertz CC, Mazzola E, Garcia MT, Alvarez-Buylla A, Cepko CL, Kriegstein AR (2015) Wide dispersion and diversity of clonally related inhibitory interneurons. Neuron 87:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayer C, Jaglin XH, Cobbs LV, Bandler RC, Streicher C, Cepko CL, Hippenmeyer S, Fishell G (2015) Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87:989–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turrero Garcia M, Harwell CC (2017) Radial glia in the ventral telencephalon. FEBS Lett 591:3942–3959

    Article  CAS  PubMed  Google Scholar 

  34. Frantz GD, Mcconnell SK (1996) Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17:55–61

    Article  CAS  PubMed  Google Scholar 

  35. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  CAS  PubMed  Google Scholar 

  36. Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  37. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    Article  CAS  PubMed  Google Scholar 

  38. Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43

    Article  PubMed  Google Scholar 

  39. Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  CAS  PubMed  Google Scholar 

  40. Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17:9212–9219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88

    Article  CAS  PubMed  Google Scholar 

  42. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152

    Article  CAS  Google Scholar 

  43. Schmechel DE, Rakic P (1979) Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature 277:303–305

    Article  CAS  PubMed  Google Scholar 

  44. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    Article  CAS  PubMed  Google Scholar 

  45. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morshead CM, Garcia AD, Sofroniew MV, van der Kooy D (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84

    Article  PubMed  Google Scholar 

  47. Chaker Z, Codega P, Doetsch F (2016) A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip Rev Dev Biol 5:640–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim DA, Alvarez-Buylla A (2016) The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol 8:pii: a018820

    Article  CAS  Google Scholar 

  50. Rushing G, Ihrie RA (2016) Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. Front Biol 11:261–284

    Article  Google Scholar 

  51. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013) Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci U S A 110:E1045–E1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Obernier K, Cebrian-Silla A, Thomson M, Parraguez JI, Anderson R, Guinto C, Rodas Rodriguez J, Garcia-Verdugo JM, Alvarez-Buylla A (2018) Adult neurogenesis is sustained by symmetric self-renewal and differentiation. Cell Stem Cell 22:221–234.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Azim k, Fiorelli r, Zweifel s, Hurtado-Chong a, Yoshikawa k, Slomianka l, Raineteau O (2012) 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains. PLoS One 7:e49087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, Mastick GS, Ashery-Padan R, Saghatelyan A, Berninger B, Gotz M (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28:6439–6452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Marchis S, Bovetti S, Carletti B, Hsieh YC, Garzotto D, Peretto P, Fasolo A, Puche AC, Rossi F (2007) Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci 27:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Delgado RN, Lim DA (2015) Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells. Dev Biol 407:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernandez ME, Croce S, Boutin C, Cremer H, Raineteau O (2011) Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis. Neural Dev 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, Kriegstein AR, Alvarez-Buylla A (2011) Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 71:250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lopez-Juarez A, Howard J, Ullom K, Howard L, Grande A, Pardo A, Waclaw R, Sun YY, Yang D, Kuan CY, Campbell K, Nakafuku M (2013) Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone. Genes Dev 27:1272–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A (2014) Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 17:207–214

    Article  CAS  PubMed  Google Scholar 

  61. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  CAS  PubMed  Google Scholar 

  62. Winpenny E, Lebel-Potter M, Fernandez ME, Brill MS, Gotz M, Guillemot F, Raineteau O (2011) Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. Neural Dev 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  63. Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Gotz M (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28:434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhuo L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187:36–42

    Article  CAS  PubMed  Google Scholar 

  65. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F (2016) Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19:643–652

    Article  CAS  PubMed  Google Scholar 

  67. Petrik D, Myoga MH, Grade S, Gerkau NJ, Pusch M, Rose CR, Grothe B, Gotz M (2018) Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. Cell Stem Cell 22:865–878.e8

    Article  CAS  PubMed  Google Scholar 

  68. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  CAS  PubMed  Google Scholar 

  70. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tong CK, Chen J, Cebrian-Silla A, Mirzadeh Z, Obernier K, Guinto CD, Tecott LH, Garcia-Verdugo JM, Kriegstein A, Alvarez-Buylla A (2014) Axonal control of the adult neural stem cell niche. Cell Stem Cell 14:500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  CAS  PubMed  Google Scholar 

  73. Arias-Carrion O, Ortega-Robles E, de Celis-Alonso B, Palasz A, Mendez-Rojas M, Salas-Pacheco J, Murillo-Rodriguez E (2018) Depletion of hypocretin/orexin neurons increases cell proliferation in the adult subventricular zone. CNS Neurol Disord Drug Targets 17:106–112

    Article  CAS  PubMed  Google Scholar 

  74. Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paul A, Chaker Z, Doetsch F (2017) Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356:1383–1386

    Article  CAS  PubMed  Google Scholar 

  76. Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon MA (2013) Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res 11:516–528

    Article  CAS  PubMed  Google Scholar 

  77. Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andang M, Ernfors P (2011) Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci U S A 108:5837–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen L, Malgrange B, Breuskin I, Bettendorff L, Moonen G, Belachew S, Rigo JM (2003) Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23:3278–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens CB, Bally-Cuif L (2013) Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development 140:3335–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, Mckay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  PubMed  Google Scholar 

  84. Basak O, Giachino C, Fiorini E, Macdonald HR, Taylor V (2012) Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci 32:5654–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, Taylor V (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J 24:3504–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kawai H, Kawaguchi D, Kuebrich BD, Kitamoto T, Yamaguchi M, Gotoh Y, Furutachi S (2017) Area-specific regulation of quiescent neural stem cells by Notch3 in the adult mouse subependymal zone. J Neurosci 37:11867–11880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  88. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

    Article  CAS  PubMed  Google Scholar 

  89. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93:14895–14900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Falcao AM, Palha JA, Ferreira AC, Marques F, Sousa N, Sousa JC (2012) Topographical analysis of the subependymal zone neurogenic niche. PLoS One 7:e38647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kelsch W, Mosley CP, Lin CW, Lois C (2007) Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol 5:e300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17:329–340

    Article  CAS  PubMed  Google Scholar 

  96. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A (2017) Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep 18(3):777–790. https://doi.org/10.1016/j.celrep.2016.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F (2019) Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep 26(2):394–406.e5. https://doi.org/10.1016/j.celrep.2018.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  99. Delgado RN, Lu C, Lim DA (2016) Maintenance of neural stem cell regional identity in culture. Neurogenesis 3:e1187321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18:657–665

    Article  CAS  PubMed  Google Scholar 

  101. Lepousez G, Valley MT, Lledo PM (2013) The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 75:339–363

    Article  CAS  PubMed  Google Scholar 

  102. Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014) Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci 34:5788–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakamoto M, Kageyama R, Imayoshi I (2014) The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci 8:121

    PubMed  PubMed Central  Google Scholar 

  104. Egger V, Urban NN (2006) Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin Cell Dev Biol 17:424–432

    Article  PubMed  Google Scholar 

  105. Isaacson JS, Strowbridge BW (1998) Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20:749–761

    Article  CAS  PubMed  Google Scholar 

  106. Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci U S A 92:3371–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Price JL, Powell TP (1970) The mitral and short axon cells of the olfactory bulb. J Cell Sci 7:631–651

    CAS  PubMed  Google Scholar 

  108. Kosaka K, Aika Y, Toida K, Heizmann CW, Hunziker W, Jacobowitz DM, Nagatsu I, Streit P, Visser TJ, Kosaka T (1995) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci Res 23:73–88

    Article  CAS  PubMed  Google Scholar 

  109. Lledo PM, Merkle FT, Alvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18:490–492

    Article  CAS  PubMed  Google Scholar 

  111. Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa VH, Butt SJ, Battiste J, Johnson JE, Machold RP, Fishell G (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30:1582–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    Article  CAS  PubMed  Google Scholar 

  113. Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696

    Article  CAS  PubMed  Google Scholar 

  114. Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Gotz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  116. Hack MA, Saghatelyan A, De Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872

    Article  CAS  PubMed  Google Scholar 

  117. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Azim K, Fischer B, Hurtado-Chong A, Draganova K, Cantu C, Zemke M, Sommer L, Butt A, Raineteau O (2014) Persistent Wnt/beta-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32:1301–1312

    Article  CAS  PubMed  Google Scholar 

  119. Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gonzalez-Perez O, Quinones-Hinojosa A (2010) Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia 58:975–983

    PubMed  PubMed Central  Google Scholar 

  121. Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27:2032–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ortega F, Gascon S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Chichung Lie D, Schroeder T, Berninger B (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15:602–613

    Article  CAS  PubMed  Google Scholar 

  124. Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, Mills Ko E, Zarbalis K, Deng W, Pleasure D (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci 35:3756–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tong CK, Fuentealba LC, Shah JK, Lindquist RA, Ihrie RA, Guinto CD, Rodas-Rodriguez JL, Alvarez-Buylla A (2015) A dorsal SHH-dependent domain in the V-SVZ produces large numbers of oligodendroglial lineage cells in the postnatal brain. Stem Cell Reports 5:461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761

    Article  CAS  PubMed  Google Scholar 

  127. Fuccillo M, Rallu M, Mcmahon AP, Fishell G (2004) Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131:5031–5040

    Article  CAS  PubMed  Google Scholar 

  128. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, Mcmahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  CAS  PubMed  Google Scholar 

  129. Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344

    Article  CAS  PubMed  Google Scholar 

  130. Petrova R, Garcia AD, Joyner AL (2013) Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. J Neurosci 33:17490–17505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Samanta J, Grund EM, Silva HM, Lafaille JJ, Fishell G, Salzer JL (2015) Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature 526(7573):448–452. https://doi.org/10.1038/nature14957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  CAS  PubMed  Google Scholar 

  133. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, Mcdermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  PubMed  Google Scholar 

  134. Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prufer K, Kelso J, Naumann R, Nusslein I, Dahl A, Lachmann R, Paabo S, Huttner WB (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347:1465–1470

    Article  CAS  PubMed  Google Scholar 

  135. Guerrero-Cazares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, Garcia-Verdugo JM, Quinones-Hinojosa A (2011) Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol 519:1165–1180

    Article  PubMed  Google Scholar 

  136. Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, Alvarez-Buylla A, Kriegstein AR (2013) Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci 16:1576–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  138. Sanai N, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A (2007) Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science 318:393. author reply 393

    Article  CAS  PubMed  Google Scholar 

  139. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zecevic N (2004) Specific characteristic of radial glia in the human fetal telencephalon. Glia 48:27–35

    Article  PubMed  Google Scholar 

  142. Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  CAS  PubMed  Google Scholar 

  144. Flandin P, Kimura S, Rubenstein JL (2010) The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 30:2812–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marin O, Anderson SA, Rubenstein JL (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nobrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marin O (2008) Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  148. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358:1318–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bignami A, Dahl D (1974) Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252:55–56

    Article  CAS  PubMed  Google Scholar 

  150. Cameron RS, Rakic P (1991) Glial cell lineage in the cerebral cortex: a review and synthesis. Glia 4:124–137

    Article  CAS  PubMed  Google Scholar 

  151. Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    CAS  PubMed  Google Scholar 

  152. Edwards MA, Yamamoto M, Caviness VS, JR. (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36:121–144

    Article  CAS  PubMed  Google Scholar 

  153. Pixley SK, De Vellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 317:201–209

    Article  CAS  PubMed  Google Scholar 

  154. Schnitzer J, Schachner M (1981) Characterization of isolated mouse cerebellar cell populations in vitro. J Neuroimmunol 1:457–470

    Article  CAS  PubMed  Google Scholar 

  155. Ihrie RA, Alvarez-Buylla A (2009) Neural stem cells disguised as astrocytes. In: Parpura V, Haydon PG (eds) Astrocytes in (patho)physiology of the nervous system. Springer Science+Business Media

    Google Scholar 

  156. Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646–664

    Article  PubMed  Google Scholar 

  157. Mirzaa GM, Campbell CD, Solovieff N, Goold C, Jansen LA, Menon S, Timms AE, Conti V, Biag JD, Adams C, Boyle EA, Collins S, Ishak G, Poliachik S, Girisha KM, Yeung KS, Chung BHY, Rahikkala E, Gunter SA, Mcdaniel SS, Macmurdo CF, Bernstein JA, Martin B, Leary R, Mahan S, Liu S, Weaver M, Doerschner M, Jhangiani S, Muzny DM, Boerwinkle E, Gibbs RA, Lupski JR, Shendure J, Saneto RP, Novotny EJ, Wilson CJ, Sellers WR, Morrissey M, Hevner RF, Ojemann JG, Guerrini R, Murphy LO, Winckler W, Dobyns WB (2016) Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol 73:836–845

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chau KF, Shannon ML, Fame RM, Fonseca E, Mullan H, Johnson MB, Sendamarai AK, Springel MW, Laurent B, Lehtinen MK (2018) Downregulation of ribosome biogenesis during early forebrain development. elife 7:e36998

    Article  PubMed  PubMed Central  Google Scholar 

  159. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, Mcfarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schutz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG (2018) Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173:90–103.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR, Malone CD, Hannon GJ, Lehmann R (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290

    Article  CAS  PubMed  Google Scholar 

  161. Paliouras GN, Hamilton LK, Aumont A, Joppe SE, Barnabe-Heider F, Fernandes KJ (2012) Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32:15012–15026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  CAS  PubMed  Google Scholar 

  163. Magnani D, Hasenpusch-Theil K, Jacobs EC, Campagnoni AT, Price DJ, Theil T (2010) The Gli3 hypomorphic mutation Pdn causes selective impairment in the growth, patterning, and axon guidance capability of the lateral ganglionic eminence. J Neurosci 30:13883–13894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bhide PG (1996) Cell cycle kinetics in the embryonic mouse corpus striatum. J Comp Neurol 374:506–522

    Article  CAS  PubMed  Google Scholar 

  165. Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Martin-Ibanez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion-Poll L, Herranz C, Esgleas M, Garcia-Diaz Barriga G, Edel MJ, Vicario-Abejon C, Alberch J, Girault JA, Chan S, Kastner P, Canals JM (2017) Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development 144:1566–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pilaz LJ, Mcmahon JJ, Miller EE, Lennox AL, Suzuki A, Salmon E, Silver DL (2016) Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89:83–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pilaz LJ, Patti D, Marcy G, Ollier E, Pfister S, Douglas RJ, Betizeau M, Gautier E, Cortay V, Doerflinger N, Kennedy H, Dehay C (2009) Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc Natl Acad Sci U S A 106:21924–21929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bjornsson CS, Apostolopoulou M, Tian Y, Temple S (2015) It takes a village: constructing the neurogenic niche. Dev Cell 32:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Silva-Vargas V, Crouch EE, Doetsch F (2013) Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr Opin Neurobiol 23:935–942

    Article  CAS  PubMed  Google Scholar 

  172. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’ercole A, Wong E, Lamantia A, Walsh C (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6:3537–3548

    Article  CAS  PubMed  Google Scholar 

  174. Alonso MI, Lamus F, Carnicero E, Moro JA, de la Mano A, Fernandez JMF, Desmond ME, Gato A (2017) Embryonic cerebrospinal fluid increases neurogenic activity in the brain ventricular-subventricular zone of adult mice. Front Neuroanat 11:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hoch RV, Rubenstein JL, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 20:378–386

    Article  CAS  PubMed  Google Scholar 

  176. Ulloa F, Briscoe J (2007) Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6:2640–2649

    Article  CAS  PubMed  Google Scholar 

  177. Tong CK, Han YG, Shah JK, Obernier K, Guinto CD, Alvarez-Buylla A (2014) Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci USA 111(34):12438–12443. https://doi.org/10.1073/pnas.1321425111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kippin TE, Kapur S, Van Der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Romero-Grimaldi C, Moreno-Lopez B, Estrada C (2008) Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J Comp Neurol 506:339–346

    Article  CAS  PubMed  Google Scholar 

  180. Culver JC, Vadakkan TJ, Dickinson ME (2013) A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 8:e53546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, Ffrench-Constant C (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30:9771–9781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Baker KL, Daniels SB, Lennington JB, Lardaro T, Czap A, Notti RQ, Cooper O, Isacson O, Frasca S Jr, Conover JC (2006) Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol 498:747–761

    Article  PubMed  Google Scholar 

  183. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Weinstein BM (2005) Vessels and nerves: marching to the same tune. Cell 120:299–302

    Article  CAS  PubMed  Google Scholar 

  185. Morizur L, Chicheportiche A, Gauthier LR, Daynac M, Boussin FD, Mouthon MA (2018) Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their microenvironment. Stem Cell Reports 11(2):565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Douet V, Arikawa-Hirasawa E, Mercier F (2012) Fractone-heparan sulfates mediate BMP-7 inhibition of cell proliferation in the adult subventricular zone. Neurosci Lett 528:120–125

    Article  CAS  PubMed  Google Scholar 

  187. Douet V, Kerever A, Arikawa-Hirasawa E, Mercier F (2013) Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 46:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157

    Article  CAS  PubMed  Google Scholar 

  189. Mercier F (2016) Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 73:4661–4674

    Article  CAS  PubMed  Google Scholar 

  190. Mercier F, Arikawa-Hirasawa E (2012) Heparan sulfate niche for cell proliferation in the adult brain. Neurosci Lett 510:67–72

    Article  CAS  PubMed  Google Scholar 

  191. Mercier F, Douet V (2014) Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone. J Chem Neuroanat 57–58:54–61

    Article  CAS  PubMed  Google Scholar 

  192. Alfonso J, Le Magueresse C, Zuccotti A, Khodosevich K, Monyer H (2012) Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. Cell Stem Cell 10:76–87

    Article  CAS  PubMed  Google Scholar 

  193. Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisen J (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Todd KL, Baker KL, Eastman MB, Kolling FW, Trausch AG, Nelson CE, Conover JC (2017) EphA4 regulates neuroblast and astrocyte organization in a neurogenic niche. J Neurosci 37:3331–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y (1999) Directional guidance of neuronal migration in the olfactory system by the protein slit. Nature 400:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann Neurol 46:867–877

    Article  CAS  PubMed  Google Scholar 

  197. Imamura T, Uesaka M, Nakashima K (2014) Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philos Trans R Soc Lond Ser B Biol Sci 369:pii: 20130511

    Article  CAS  Google Scholar 

  198. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606

    Article  CAS  PubMed  Google Scholar 

  199. Li W, Cogswell CA, Loturco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mabie PC, Mehler MF, Kessler JA (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci 19:7077–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  CAS  PubMed  Google Scholar 

  202. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, Mckay RD (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15:2094–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S, Lawrence R, Wegner M, John GR, Emery B, Lubetzki C, Franklin RJM, Fan G, Zhu J, Dupree JL, Casaccia P (2016) Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep 15:748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE (2010) Dnmt3a-Dependent Nonpromoter Dna Methylation facilitates transcription of neurogenic genes. Science 329:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hwang WW, Salinas RD, Siu JJ, Kelley KW, Delgado RN, Paredes MF, Alvarez-Buylla A, Oldham MC, Lim DA (2014) Distinct and separable roles for EZH2 in neurogenic astroglia. elife 3:e02439

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Baizabal JM, Mistry M, Garcia MT, Gomez N, Olukoya O, Tran D, Johnson MB, Walsh CA, Harwell CC (2018) The epigenetic state of PRDM16-regulated enhancers in radial glia controls cortical neuron position. Neuron 99:239–241

    Article  CAS  PubMed  Google Scholar 

  208. Lim DA, Alvarez-Buylla A (2014) Adult neural stem cells stake their ground. Trends Neurosci 37:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. de Chevigny A, Core N, Follert P, Gaudin M, Barbry P, Beclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15:1120–1126

    Article  CAS  PubMed  Google Scholar 

  210. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA (2013) Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz CC, Salinas RD, Zarabi H, Kriegstein AR, Lim DA (2015) The long noncoding RNA pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  CAS  PubMed  Google Scholar 

  214. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  CAS  PubMed  Google Scholar 

  215. Forsberg EC, Passegue E, Prohaska SS, Wagers AJ, Koeva M, Stuart JM, Weissman IL (2010) Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 5:e8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459

    Article  CAS  PubMed  Google Scholar 

  217. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  218. Pallafacchina G, Francois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4:77–91

    Article  CAS  PubMed  Google Scholar 

  219. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ (2012) The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2:e301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rushing GV, Brockman AA, Bollig MK, Leelatian N, Mobley BC, Irish JM, Ess KC, Fu C, Ihrie RA (2019) Location-dependent maintenance of intrinsic susceptibility to mTORC1-driven tumorigenesis. Life Sci Alliance 2(2):e201800218. https://doi.org/10.26508/lsa.201800218

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ahlenius H, Visan V, Kokaia M, Lindvall O, Kokaia Z (2009) Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J Neurosci 29:4408–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2:175–183

    Article  CAS  PubMed  Google Scholar 

  225. Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC (2006) The aging neurogenic subventricular zone. Aging Cell 5:139–152

    Article  CAS  PubMed  Google Scholar 

  226. Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 24:1726–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tropepe V, Craig CG, Morshead CM, van der Kooy D (1997) Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17:7850–7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Shook BA, Manz DH, Peters JJ, Kang S, Conover JC (2012) Spatiotemporal changes to the subventricular zone stem cell pool through aging. J Neurosci 32:6947–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875

    Article  PubMed  Google Scholar 

  230. Conover JC, Shook BA (2011) Aging of the subventricular zone neural stem cell niche. Aging Dis 2:49–63

    PubMed  PubMed Central  Google Scholar 

  231. Apostolopoulou M, Kiehl TR, Winter M, Cardenas de la Hoz E, Boles NC, Bjornsson CS, Zuloaga KL, Goderie SK, Wang Y, Cohen AR, Temple S (2017) Non-monotonic changes in progenitor cell behavior and gene expression during aging of the adult V-SVZ neural stem cell niche. Stem Cell Reports 9:1931–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Daynac M, Morizur L, Kortulewski T, Gauthier LR, Ruat M, Mouthon MA, Boussin FD (2015) Cell sorting of neural stem and progenitor cells from the adult mouse subventricular zone and live-imaging of their cell cycle dynamics. J Vis Exp. https://doi.org/10.3791/53247

  233. Leeman DS, Hebestreit K, Ruetz T, Webb AE, Mckay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegue E, Rando TA, Frydman J, Brunet A (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359:1277–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Ihrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rushing, G.V., Bollig, M.K., Ihrie, R.A. (2019). Heterogeneity of Neural Stem Cells in the Ventricular–Subventricular Zone. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_1

Download citation

Publish with us

Policies and ethics