Skip to main content

Abstract

Cancer is a complex group of diseases where different signaling pathways have been found to be deregulated, mainly related to cell proliferation, angiogenesis, metastasis, evasion of apoptosis and insensitivity to anti-growth sings among others. Diet plays a fundamental role in the treatment of the oncological patients, we must be aware that food can interact with certain types of cancer therapy. On the other hand, cancer therapies sometimes affect the patient’s sense of smell, taste, appetite, gastric capacity or nutrient absorption, which often results in malnutrition due to the lack of essential nutriments. In this chapter we will review the effect of different metabolic disorders in cancer and mechanisms of action of some phytochemicals found in different foods like resveratrol, EGCG, curcumin and lycopene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Mantzorou M, Koutelidakis A, Theocharis S, Giaginis C (2017) Clinical value of nutritional status in cancer: what is its impact and how it affects disease progression and prognosis? Nutr Cancer 69(8):1151–1176

    Article  PubMed  Google Scholar 

  3. Renehan AG, Soerjomataram I (2016) Obesity as an avoidable cause of cancer (attributable risks). Recent Results Cancer Res 208:243–256

    Article  CAS  PubMed  Google Scholar 

  4. Lyengar NM, Gucalp A, Dannenberg AJ, Hudis CA (2016) Obesity and Cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 34(35):4270–4276. https://doi.org/10.1200/JCO.2016.67.4283

    Article  Google Scholar 

  5. Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S Leptin and cancer: pathogenesis and modulation. Indian J Endocrinol Metab 16(Suppl 3):S596–S600

    Google Scholar 

  6. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137(3):869–882

    Article  PubMed  Google Scholar 

  7. Khan S, Shukla S, Sinha S, Meeran SM (2013) Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev 24(6):503–513

    Article  CAS  PubMed  Google Scholar 

  8. Gunter MJ, Wang T, Cushman M, Xue X, Wassertheil-Smoller S, Strickler HD et al (2015) Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk. J Natl Cancer Inst 107(9):djv169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Bustos M, Martínez JA, Moreno-Aliaga MJ (2011) Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta Bioenerg 1807(6):664–678

    Article  CAS  Google Scholar 

  10. Khatib SA, Rossi EL, Bowers LW, Hursting SD (2016) Reducing the burden of obesity-associated cancers with anti-inflammatory long-chain omega-3 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat 125:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Kruijsdijk RC, van der Wall E, Visseren FL (2009) Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 18(10):2569–2578

    Article  PubMed  CAS  Google Scholar 

  12. Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK et al (2001) Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 19(9):2381–2389

    Article  CAS  PubMed  Google Scholar 

  13. Hopkins BD, Goncalves MD, Cantley LC (2016) Obesity and cancer mechanisms: Cancer metabolism. J Clin Oncol 34(35):4277–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srikanthan P, Hevener AL, Karlamangla AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and nutrition examination survey III. PLoS One 5(5):e10805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Carneiro IP, Mazurak VC, Prado CM (2016) Clinical implications of sarcopenic obesity in cancer. Curr Oncol Rep 18(10):62

    Article  PubMed  Google Scholar 

  16. Palmela C, Velho S, Agostinho L, Branco F, Santos M, Santos MP et al (2017) Body composition as a prognostic factor of neoadjuvant chemotherapy toxicity and outcome in patients with locally advanced gastric Cancer. J Gastrointest Cancer 17(1):74–87

    Article  Google Scholar 

  17. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14(11):754

    Article  PubMed  CAS  Google Scholar 

  18. Mendes MCS, Pimentel GD, Costa FO, Carvalheira JB (2015) Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 226(3):R29–R43

    Article  CAS  PubMed  Google Scholar 

  19. Inácio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcântara PS, Tokeshi F et al (2015) Cancer as a proinflammatory environment: metastasis and cachexia. Mediat Inflamm 2015:791060

    Article  CAS  Google Scholar 

  20. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34:207–236

    Article  CAS  PubMed  Google Scholar 

  21. Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E et al (2015) Associations between dietary inflammatory index and inflammatory markers in the Asklepios study. Br J Nutr 113(4):665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turner DP (2015) Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity. Cancer Res 75(10):1925–1929. https://doi.org/10.1158/0008-5472.CAN-15-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiao L, Stolzenberg-Solomon R, Zimmerman TP, Duan Z, Chen L, Kahle L, Risch A et al (2015) Dietary consumption of advanced glycation end products and pancreatic cancer in the prospective NIH-AARP diet and health study. Am J Clin Nutr 101(1):126–134

    Article  CAS  PubMed  Google Scholar 

  24. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R et al (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(6):911–916. e12

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abdelmagid SA, MacKinnon JL, Janssen SM, Ma DW (2016) Role of n-3 polyunsaturated fatty acids and exercise in breast cancer prevention: identifying common targets. Nutr Metab Insights 9:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Molfino A, Amabile MI, Monti M, Arcieri S, Rossi Fanelli F, Muscaritoli M (2016) The role of docosahexaenoic acid (dha) in the control of obesity and metabolic derangements in breast cancer. Int J Mol Sci 17(4):505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Azrad M, Turgeon C, Demark-Wahnefried W (2013) Current evidence linking polyunsaturated fatty acids with Cancer risk and progression. Front Oncol 3:224

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bougnoux P, Hajjaji N, Maheo K, Couet C, Chevalier S (2010) Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth. Prog Lipid Res 49(1):76–86

    Article  CAS  PubMed  Google Scholar 

  29. Fabian CJ, Kimler BF (2013) Marine-derived omega-3 fatty acids: fishing for clues for cancer prevention. Am Soc Clin Oncol Educ Book 33:97–101

    Article  Google Scholar 

  30. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224(3):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aggrawal B, Bhardwaj A, Aggrawal R, Seeram NP, Hishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    Google Scholar 

  32. Kala R, Shah HN, Martin SL, Tollefsbol TO (2015) Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15:672. https://doi.org/10.1186/s12885-015-1693-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin W, Chen L, Chen Y, Xu S, Di G, Yin W et al (2010) UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat 123:359–373. https://doi.org/10.1007/s10549-009-0652-2

    Article  CAS  PubMed  Google Scholar 

  34. Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B et al (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res 4(9):1419–1425. https://doi.org/10.1158/1940-6207.CAPR-11-0148

    Article  CAS  Google Scholar 

  35. Schuurman AG, Goldbohm RA, Brants HA, van den Brandt PA (2002) A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Control 13:573–582

    Article  PubMed  Google Scholar 

  36. Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274(2):532–538

    Article  PubMed  Google Scholar 

  37. Velmurugan B, Bhuvaneswari V, Nagini S (2002) Antiperoxidative effects of lycopene during N-methyl-N-nitro-N-nitrosoguanidine-induced gastric carcinogenesis. Fitoterapia 73(7):604–611

    Article  CAS  PubMed  Google Scholar 

  38. Folli F, Bonfanti L, Renard E, Kahn C, Merighi A (1994) Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J Neurosci 14(11):6412–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raiten DJ, Ashour FAS, Ross AC, Meydani SN, Dawson HD, Stephensen CB (2015) Inflammation and nutritional science for programs/policies and interpretation of research evidence (INSPIRE). J Nutr 145(5):1039S–1108S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen A, Xu J, Johnson AC (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25(2):278–287

    Article  PubMed  CAS  Google Scholar 

  41. Amin A, Hamza AA, Bajbouj K, Ashraf SS, Daoud S (2011) Saffron: a potential target for a novel anticancer drug against hepatocellular carcinoma. Hepatology 54(3):857–867

    Article  CAS  PubMed  Google Scholar 

  42. Zou P, Helson L, Maitra A, Stern ST, McNeil SE (2013) Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm 10(5):1977–1987. https://doi.org/10.1021/mp4000019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bisht S, Mizuma M, Feldmann G, Ottenhof N, Hong SM, Pramanik D et al (2010) Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurcTM) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 9(8):2255–2264. https://doi.org/10.1158/1535-7163.MCT-10-0172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen D, Wan SB, Yang H, Yuan J, Chan TH (2011) Dou QP EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rahmani AH, Al shabrmi Fahad M, Allemailem KS, Aly SM, Khan MA (2015) Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed Res Int 2015:925640

    PubMed  PubMed Central  Google Scholar 

  46. Fang C-Y, Wu C-C, Hsu H-Y, Chuang H-Y, Tsai C-H, Chen J-Y (2015) EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int J Mol Sci 16(2):2530–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsen CA, Dashwood RH, Bisson WH (2010) Tea catechins as inhibitors of receptor tyrosine kinases: mechanistic insights and human relevance. Pharmacol Res 62(6):457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan N, Mukhtar H (2015) Dietary agents for prevention and treatment of lung cancer. Cancer Lett 359(2):155–164. https://doi.org/10.1016/j.canlet.2015.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin OQ, Gallagher N, Li A et al (2010) Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 50(2):188–194

    Article  CAS  PubMed  Google Scholar 

  50. Rinella ES, Bankaitis ED, Threadgill DW (2012) Dietary calcium supplementation enhances efficacy but also toxicity of EGFR inhibitor therapy for colon cancer. Cancer Biol Ther 13(3):130–137. https://doi.org/10.4161/cbt.13.3.18690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Menéndez JA, Vázquez-Martín A, Ropero S, Colomer R, Lupu R (2006) HER2 (erbB-2)-targeted effects of the omega-3 polyunsaturated fatty acid, alpha-linolenic acid (ALA; 18:3n-3) in breast cancer cells: the ‘fat features’ of the ‘Mediterranean diet’ as an ‘anti-HER2 cocktail. Clin Transl Oncol 8:812–820. https://doi.org/10.1007/s12094-006-0137-2

    Article  PubMed  Google Scholar 

  52. Sartippour MR, Pietras R, Marquez-Garban DC, Chen H-W, Heber D, Henning SM, Sartippour G, Zhang L, Ming L, Weinberg O, Rao JY, Brooks MN (December 2006) The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 27(12):2424–2433

    Article  CAS  PubMed  Google Scholar 

  53. Holmes FA, Liticker JD (2005) Pharmacogenomics of tamoxifen in a nutshell-and who broke the nutcracker? J Oncol Pract 1(4):155–159. https://doi.org/10.1200/JOP.2005.1.4.155

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hamaguchi R, Okamoto T, Sato M, Hasegawa M, Wada H (September 2017) Effects of an alkaline diet on EGFR-TKI therapy in EGFR mutation-positive NSCLC. Anticancer Res 37(9):5141–5151

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jóse Ali Flores-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores-Pérez, J.A., de la Rosa Oliva, F., Argenes, Y., Meneses-Garcia, A. (2019). Nutrition, Cancer and Personalized Medicine. In: Ruiz-Garcia, E., Astudillo-de la Vega, H. (eds) Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-24100-1_11

Download citation

Publish with us

Policies and ethics