Skip to main content

Pharmaco-Geno-Proteo-Metabolomics and Translational Research in Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1168))

Abstract

The diagnosis, prognosis and treatment of cancer has had a great improvement due to the “omics” technologies such as genomics, proteomics, epigenomics, pharmacogenomics, and metabolomics. The technological progress of these technologies has allowed precision medicine to become a clinical reality. The study of different biomolecules such as DNA, RNA and proteins has helped to detect alterations in genes, changes in gene expression profiles and loss or gain of protein function, which allows us to make associations and better understand the cancer biology. Data obtained from different “omics” technologies gives a complementary spectrum of information that helps us to understand and unveil new information for a better diagnosis, prognosis, prediction of new molecular targets of anticancer therapies, etc. This chapter presents a general landscape of the interaction between the Pharmaco-Geno-Proteo-Metabolomic and translational medicine research in cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Syedmoradi L, Gomez FA (2017) Paper-based point-of-care testing in disease diagnostics. Bioanalysis 9:841–843. https://doi.org/10.4155/bio-2017-0080

    Article  CAS  PubMed  Google Scholar 

  2. Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F (2017) Precision medicine in breast cancer: reality or utopia? J Transl Med 15:1–13. https://doi.org/10.1186/s12967-017-1239-z

    Article  CAS  Google Scholar 

  3. Marko-Varga G, Fehniger T (2012) Monitoring targeted drug delivery: a key cornerstone of precision medicine. J Transl Med 10(Suppl.2):A48. https://doi.org/10.1186/1479-5876-10-S2-A48

    Article  PubMed Central  Google Scholar 

  4. Snyder NW, Mesaros C, Blair IA (2015) Translational metabolomics in cancer research. Biomark Med 9:821–834. https://doi.org/10.2217/bmm.15.52

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Wei Y, Zhang R, Su L, Gogarten S, Liu G et al (2018) Multi-Omics analysis reveals a HIF network and Hub gene EPAS1 associated with lung adenocarcinoma. EBioMedicine 32:93–101. https://doi.org/10.1016/j.ebiom.2018.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun H, Xing X, Li J, Zhou F, Chen Y, He Y et al (2013) Identification of gene fusions from human lung cancer mass spectrometry data. BMC Genomics 14(Supp 8):S5. https://doi.org/10.1186/1471-2164-14-S8-S5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Epstein R, Lin F (2017) Cancer and the omics revolution. Aust Fam Physician 46:189–193

    PubMed  Google Scholar 

  8. Chen JT, Liu CC, Yu JS, Li HH, Lai MC (2018) Integrated omics profiling identifies hypoxia-regulated genes HCT116 colon cancer cells. J Proteome S1874-3919:30096–30094. https://doi.org/10.1016/j.jprot.2018.02.031

    Article  CAS  Google Scholar 

  9. Woo S, Cha SW, Na S, Guest C, Liu T et al (2014) Proteogenomic strategies for identification of aberrant cancer peptides using large-scale next-generation sequencing data. Proteomics 00:1–12. https://doi.org/10.1002/pmic.201400206

    Article  CAS  Google Scholar 

  10. Subbannayya Y, Pinto SM, Gowda H, Prasad TS (2016) Proteogenomics for understanding oncology: recent advances and future prospects. Expert Rev Proteomics 13:297–308. https://doi.org/10.1586/14789450.2016.1136217

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z et al (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513:382–387. https://doi.org/10.1038/nature13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souiai O, Becker E, Prieto C, Benkahla A, De Las Rivas J et al (2011) Functional integrative levels in the human interactome recapitulate organ organization. PLoS One 6:e22051. https://doi.org/10.1371/journal.pone.0022051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vashisht S, Bagler G (2012) An approach for the identification of targets specific to bone metastases using cancer genes interactome and gene ontology analysis. PLoS One 7:e49401. https://doi.org/10.1371/journal.pone.0049401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spratlin J, Serkova N, Eckhardt S (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J (2009) Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res 69:6770–6772. https://doi.org/10.1158/0008-5472.CAN-09-1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ (2013) Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 14(1):23–34. https://doi.org/10.1038/nrg3352

    Article  CAS  PubMed  Google Scholar 

  18. Lakiotaki K, Kanterakis A, Kartsaki E, Katsila T, Patrinos GP, Potamias G (2017) Exploring public genomics data for population pharmacogenomics. Galli A, ed. PLoS One 12(8):e0182138. https://doi.org/10.1371/journal.pone.0182138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katsila T, Patrinos GP (2015) Whole genome sequencing in pharmacogenomics. Front Pharmacol 6:61. https://doi.org/10.3389/fphar.2015.00061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Londin ER, Clark P, Sponziello M, Kricka LJ, Fortina P, Park JY (2014) Performance of exome sequencing for pharmacogenomics. Pers Med 12(2):109–115. https://doi.org/10.2217/PME.14.77

    Article  Google Scholar 

  21. Dere WH, Suto TS (2009) The role of pharmacogenetics and pharmacogenomics in improving translational medicine. Clin Cases Miner Bone Metab 6(1):13–16. PMID:22461092

    PubMed  PubMed Central  Google Scholar 

  22. Lu D-Y, Lu T-R, Xu B, Ding J (2015) Pharmacogenetics of cancer therapy: breakthroughs from beyond? Future Sci OA 1(4):FSO80. https://doi.org/10.4155/fso.15.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel JN (2016) Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmacogen Personal Med 9:65–77. https://doi.org/10.2147/PGPM.S62918

    Article  CAS  Google Scholar 

  24. Chambliss AB, Chan DW (2016) Precision medicine: from pharmacogenomics to pharmacoproteomics. Clin Proteomics 13:25. https://doi.org/10.1186/s12014-016-9127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogers JF, Nafziger AN, Bertino JS (2002) Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450–metabolized drugs. Am J Med 113(9):746–750. https://doi.org/10.1016/S0002-9343(02)01363-3

    Article  CAS  PubMed  Google Scholar 

  26. Belle DJ, Singh H (2008) Genetic factors in drug metabolism. Am Fam Physician 77:1553–1560

    PubMed  Google Scholar 

  27. Roychowdhury S, Iyer MK, Robinson DR et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3(111):111ra121. https://doi.org/10.1126/scitranslmed.3003161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stenson PD, Mort M, Ball EV et al (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(Database Issue):D514–D517. https://doi.org/10.1093/nar/gki033

    Article  CAS  PubMed  Google Scholar 

  33. Thorn CF, Klein TE, Altman RB (2013) PharmGKB: the pharmacogenomics knowledge base. Methods Mol Biol (Clifton, NJ) 1015:311–320. https://doi.org/10.1007/978-1-62703-435-7_20.

    Article  CAS  Google Scholar 

  34. Wishart DS, Knox C, Guo AC et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906. https://doi.org/10.1093/nar/gkm958

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith A. Fernández-Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Figueroa, E.A., Lino-Silva, S., Peña-Velasco, J.E., Rangel-Escareño, C. (2019). Pharmaco-Geno-Proteo-Metabolomics and Translational Research in Cancer. In: Ruiz-Garcia, E., Astudillo-de la Vega, H. (eds) Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-24100-1_1

Download citation

Publish with us

Policies and ethics