Skip to main content

Cytology Techniques

  • Chapter
  • First Online:
Book cover Practical Cytopathology

Part of the book series: Practical Anatomic Pathology ((PAP))

Abstract

Over the years, cytopathology laboratories have experienced dramatic changes in the numbers and types of specimens submitted for evaluation. With the application of more sophisticated image guidance technology, cells can be obtained from almost all anatomic sites by fine-needle aspiration (FNA).

Accurate interpretation of cytologic samples is highly dependent on the quality of the preparation. Preparation includes several equally important steps that include specimen collection, placement of sample on slides, fixation, staining, and coverslipping of the cell sample. A better understanding of the cytopreparation techniques is necessary to produce optimal results.

There have been remarkable methodological advances in cytology in the past several years. Immunochemistry is one of the most successful ancillary study techniques. Improved cytopreparatory methodology including use of cell block together with availability of sensitive and specific markers has led to greater diagnostic utility of cytological preparations for pathology diagnosis. In cytology, the practical utility of immunocytochemistry includes differentiation of primary from metastatic tumors, determination of the sites of origin of metastatic tumors, assessment of prognostic and predictive markers, and characterization of poorly differentiated neoplasms.

Molecular and cytogenetic techniques have been growing rapidly and become an integral part of pathology over the last decade. They are also being applied in many areas of diagnostic cytopathology, such as early diagnosis of premalignant lesions and cancer, prediction of prognosis, and treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papanicolaou GN. A new procedure for staining vaginal smears. Science. 1942;95:438–9.

    Article  CAS  PubMed  Google Scholar 

  2. Beyer-Boon ME, Voorn-den Hollander MJA. Cell yield with various cytopreparatory techniques for urinary cytology. Acta Cytol. 1978;22:589–94.

    CAS  PubMed  Google Scholar 

  3. Bales C. A semi-automated method for preparation of urine sediment for cytologic evaluation. Acta Cytol. 1981;25:323–6.

    CAS  PubMed  Google Scholar 

  4. Jain D, Mathur SR, Iyer VK. Cell blocks in cytopathology: a review of preparative methods, utility in diagnosis and role in ancillary studies. Cytopathology. 2014;25(6):356–71.

    CAS  PubMed  Google Scholar 

  5. Yung RC, Otell S, Illei P, et al. Improvement of cellularity on cell block preparations using the so-called tissue coagulum clot method during endobronchial ultrasound-guided transbronchial fine-needle aspiration. Cancer Cytopathol. 2012;120:185–95.

    Article  PubMed  Google Scholar 

  6. Bellizzi AM, Stelow EB. Pancreatic cytopathology: a practical approach and review. Arch Pathol Lab Med. 2009;133:388–404.

    PubMed  Google Scholar 

  7. Khurana U, Handa U, Mohan H, Sachdev A. Evaluation of aspiration cytology of the liver space occupying lesions by simultaneous examination of smears and cell blocks. Diagn Cytopathol. 2009;37:557–63.

    Article  PubMed  Google Scholar 

  8. Kulkarni MB, Desai SB, Ajit D, Chinoy RF. Utility of the thromboplastin-plasma cell-block technique for fine-needle aspiration and serous effusions. Diagn Cytopathol. 2009;37:86–90.

    Article  PubMed  Google Scholar 

  9. Henwood AF, Charlton A. Extraneous epithelial cells from thromboplastin in cell blocks. Cytopathology. 2014;25:411–2.

    Google Scholar 

  10. Smedts F, Schrik M, Horn T, Hopman AH. Diagnostic value of processing cytologic aspirates of renal tumors in agar cell (tissue) blocks. Acta Cytol. 2010;54:587–94.

    Article  PubMed  Google Scholar 

  11. Kerstens HM, Robben JC, Poddighe PJ, et al. Agar Cyto: a novel cell-processing method for multiple molecular diagnostic analyses of the uterine cervix. J Histochem Cytochem. 2000;48:709–18.

    Article  CAS  PubMed  Google Scholar 

  12. Varsegi GM, Shidham V. Cell block preparation from cytology specimen with predominance of individually scattered cells. J Vis Exp. 2009;(29):pii:1316.

    Google Scholar 

  13. He QL, Zhu YZ, Zheng GJ, et al. A new convenient technique for making cell blocks. Cell Tissue Res. 2012;350:395–400.

    Article  PubMed  Google Scholar 

  14. Khan S, Omar T, Michelow P. Effectiveness of the cell block technique in diagnostic cytopathology. J Cytol. 2012;29:177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wagner DG, Russell DK, Benson JM, et al. CellientTM automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining. Diagn Cytopathol. 2011;39:730–6.

    Article  PubMed  Google Scholar 

  16. Boon ME. The Cellient system for paraffin histology can be combined with HPV testing and morphotyping the vaginal microbiome thanks to boon fixing. Obstet Gynecol Int. 2013;2013:502357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xing W, Hou AY, Fischer A, Owens CL, Jiang Z. The Cellient automated cell block system is useful in the differential diagnosis of atypical glandular cells in Papanicolaou tests. Cancer Cytopathol. 2014;122:8–14.

    Article  PubMed  Google Scholar 

  18. van Hemel BM, Suurmeijer AJ. Effective application of the methanol-based PreservCyt(TM) fixative and the Cellient(TM) automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol. 2013;41:734–41.

    Article  PubMed  Google Scholar 

  19. Werner M, Chott A, Fabiano A, Battifora H. Effect of formalin fixation and processing on immunochemistry. Am J Surg Pathol. 2000;24:1016–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shi SR, Key ME, Kabra KL. Antigen retrieval in formalin fixed, paraffin embedded tissues. An enhancement method for immunochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem. 1991;39:741–8.

    Article  CAS  PubMed  Google Scholar 

  21. Reynolds GM, Young FI, Young JA, et al. Microwave oven antigen retrieval applied to the immunostaining of cytopathology specimens. Cytopathology. 1994;5:345–58.

    Article  CAS  PubMed  Google Scholar 

  22. Schmitt FC, Bento MJ, Amendoeira I. Estimation of estrogen receptor content in fine needle aspirates from breast cancer using the monoclonal antibody 1D5 and microwave oven processing: correlation with paraffin embedded and frozen sections determinations. Diagn Cytopathol. 1995;131:347–51.

    Article  Google Scholar 

  23. Mogan JM, Nabi H, Schmid KW, Jasani B. Possible role of tissue bound calcium ions in citrate mediated high temperature retrieval. J Pathol. 1994;174:301–7.

    Article  Google Scholar 

  24. Seidal T, Balaton AJ, Battifora H. Interpretation and quantification of immunostains. Am J Surg Pathol. 2001;25:1204–7.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor CR, Cote RJ. Immunomicroscopy, a diagnostic tool for the surgical pathologist. 3rd ed. Philadelphia: Elsevier; 2006.

    Google Scholar 

  26. Nakleh RE, Fitzgibbons PL, editors. Quality management in anatomic pathology: promoting patient safety through systems improvement and error reduction. Northfield: CAP; 2005. p. 93–110.

    Google Scholar 

  27. Taylor CR. The total test approach to standardization of immunohistochemistry. Arch Pathol Lab Med. 2000;124:945–51.

    CAS  PubMed  Google Scholar 

  28. O’Leary TJ. Standardization in immunohistochemistry. Appl Immunohistochem Mol Morphol. 2001;9:3–8.

    PubMed  Google Scholar 

  29. Fitzgibbons PL, Murphy DA, Hammond ME, Allred DC, Valenstein PN. Recommendations for validating estrogen and progesterone receptor immunohistochemistry assays. Arch Pathol Lab Med. 2010;134:930–5.

    CAS  PubMed  Google Scholar 

  30. Chan JK, Wong CS, Ku WT, Kwan MY. Reflections on the use of controls in immunohistochemistry and proposal for application of a multitissue spring-roll control block. Ann Diagn Pathol. 2000;4:329–36.

    Article  CAS  PubMed  Google Scholar 

  31. Burry RW. Specificity controls for immunocytochemical methods. J Histochem Cytochem. 2000;48:163–6.

    Article  CAS  PubMed  Google Scholar 

  32. Torlakovic EE, Francis G, Garratt J, et al. Standardization of negative controls in diagnostic immunohistochemistry: recommendations from the international ad hoc expert panel. Appl Immunohistochem Mol Morphol. 2014;22:241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fowler LJ, Lachar WA. Application of immunohistochemistry to cytology. Arch Pathol Lab Med. 2008;132:373–83.

    PubMed  Google Scholar 

  34. Wick MR, Swanson PE. Targeted controls in clinical immunohistochemistry. Am J Clin Pathol. 2002;117:7–8.

    Article  PubMed  Google Scholar 

  35. Kontogeorgos G, Kapranos N, Thodou E. Practical approaches of the FISH technique. In: Lloyd RV, editor. Morphology methods, cell and molecular biology techniques. Totowa: Humana Press; 2001. p. 91–111.

    Google Scholar 

  36. Wolman S. Applications of fluorescence in situ hybridization techniques in cytopathology. Cancer. 1997;81:193–7.

    Article  CAS  PubMed  Google Scholar 

  37. Konomen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high through-out molecular profiling of tumor specimens. Nat Med. 1998;4:844–7.

    Article  Google Scholar 

  38. Watanabe A, Cornelison R, Hostetter G. Tissue microarrays: applications in genomic research. Expert Rev Mol Diagn. 2005;5:171–81.

    Article  CAS  PubMed  Google Scholar 

  39. Hu Q, Shi Y, Li X, Hou Y, et al. An improved high-output cell microarray technology. Cytopathology. 2015;26:44–9.

    Article  CAS  PubMed  Google Scholar 

  40. Morse EE, Yamase HT, Greenberg BR, Sporn J, Harshaw SA, Kiraly TR, Ziemba RA, Fallon MA. The role of flow cytometry in the diagnosis of lymphoma: a critical analysis. Ann Clin Lab Sci. 1994;24:6–11.

    CAS  PubMed  Google Scholar 

  41. Jin L, Qian X, Lloyd RV. In situ hybridization. Detection of DNA and RNA. In: Lloyd RV, editor. Morphology methods cell and molecular biology techniques. Totowa: Humana Press; 2001. p. 27–46.

    Google Scholar 

  42. Sheldon S. Fluorescent in situ hybridization. In: Lloyd RV, editor. Morphology methods cell and molecular biology techniques. Totowa: Humana Press; 2001. p. 67–90.

    Google Scholar 

  43. Levsky JM, Robert H. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116:2833–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Veeramachaneni R, Nordberg ML, Shi R, et al. Evaluation of fluorescence in situ hybridization as an ancillary tool to urine cytology in diagnosing urothelial carcinoma. Diagn Cytopathol. 2003;28:301–7.

    Article  PubMed  Google Scholar 

  46. Sokolova IA, Bubendorf L, O’Hare A, et al. A fluorescence in situ hybridization based assay for improved detection of lung cancer cells in bronchial washing specimens. Cancer. 2002;96:306–15.

    Article  PubMed  Google Scholar 

  47. Barkan GA, Caraway NP, Jiang F, et al. Comparison of molecular abnormalities in bronchial brushings and tumor touch preparations. Cancer Cytopathol. 2005;105:35–43.

    Article  CAS  Google Scholar 

  48. Kusum K, Al-Awadhi S, Francis IM. Her-2 neu (Cerb-B2) expression in fine needle aspiration samples of breast carcinoma: a pilot study comparing FISH, CISH and immunocytochemistry. J Cytol. 2011;28:54–6.

    Article  Google Scholar 

  49. Gong Y, Caraway N, Gu J, et al. Evaluation of interphase fluorescence in situ hybridization for the t (14;18) (q32; q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer. 2003;99:385–93.

    Article  PubMed  Google Scholar 

  50. Beatty BG, Bryant R, Wang W, et al. HER-2/neu detection in fine-needle aspirates of breast cancer: fluorescence in situ hybridization and immunocytochemical analysis. Am J Clin Pathol. 2004;122:246.

    Article  CAS  PubMed  Google Scholar 

  51. Gu M, Ghafari S, Zhao M. Fluorescence in situ hybridization for HER-2/neu amplification of breast carcinoma in archival fine needle aspiration biopsy specimens. Acta Cytol. 2005;49:471–6.

    Article  PubMed  Google Scholar 

  52. Moore JG, To V, Patel SJ, et al. HER-2/neu gene amplification in breast imprint cytology analyzed by fluorescence in situ hybridization: direct comparison with companion tissue sections. Diagn Cytopathol. 2000;23:299–302.

    Article  CAS  PubMed  Google Scholar 

  53. Tomas AR, Praca MJ, Fonseca R, et al. Assessing HER-2 status in fresh frozen and archival cytological samples obtained by fine needle aspiration cytology. Cytopathology. 2004;15:311–4.

    Article  CAS  PubMed  Google Scholar 

  54. Sauter G, Lee J, Bartlett JM, et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27:1323–33.

    Article  CAS  PubMed  Google Scholar 

  55. Okabe H, Satoch S, Kato T, et al. Genome wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarrays. Identification of genes involved in venal carcinogenesis and tumor progression. Cancer Res. 2001;61:2129–37.

    CAS  PubMed  Google Scholar 

  56. Shirota Y, Kaneko S, Honda M, et al. Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microarrays. Hepatology. 2001;33:832–40.

    Article  CAS  PubMed  Google Scholar 

  57. Watson MA, Perry A, Budhjara V, et al. Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Res. 2001;61:1825–9.

    CAS  PubMed  Google Scholar 

  58. Khurana KK. Telecytology and its evolving role in cytopathology. Diagn Cytopathol. 2012;40:498–502.

    Article  PubMed  Google Scholar 

  59. House JC, Henderson-Jackson EB, Johnson JO, et al. Diagnostic digital cytopathology: are we ready yet? J Pathol Inform. 2013;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hedvat CV. Digital microscopy: past, present, and future. Arch Pathol Lab Med. 2010;134:1666–70.

    PubMed  Google Scholar 

  61. Wilbur DC. Digital cytology: current state of the art and prospects for the future. Acta Cytol. 2011;55:227–38.

    Article  CAS  PubMed  Google Scholar 

  62. Khalbuss WE, Pantanowitz L, Parwani AV. Digital imaging in cytopathology. Patholog Res Int. 2011;2011:264683.

    PubMed  PubMed Central  Google Scholar 

  63. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the college of american pathologists pathology and laboratory quality center. Arch Pathol Lab Med. 2013;137:1710–22. https://doi.org/10.5858/arpa.2013-0093-CP.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alsharif M, Carlo-Demovich J, Massey C, Madory JE, Lewin D, Medina AM, et al. Telecytopathology for immediate evaluation of fine-needle aspiration specimens. Cancer Cytopathol. 2010;118:119–26.

    Article  PubMed  Google Scholar 

  65. Kaplan KJ. Telecytopathology for immediate evaluation of fine-needle aspiration specimens. Cancer Cytopathol. 2010;118:115–8.

    Article  PubMed  Google Scholar 

  66. Taylor C. Issues in using whole slide imaging for diagnostic pathology: “routine” stains, immunohistochemistry and predictive markers. Biotech Histochem. 2014;89(6):419–23.

    Article  CAS  PubMed  Google Scholar 

  67. Shinde V, Burke KE, Chakravarty A, et al. Applications of pathology-assisted image analysis of immunohistochemistry-based biomarkers in oncology. Vet Pathol. 2014;51:202–303.

    Article  CAS  Google Scholar 

  68. Keay T, Conway CM, O’Flaherty N, Hewitt SM, Shea K, Gavrielides MA. Reproducibility in the automated quantitative assessment of HER2/neu for breast cancer. J Pathol Inform. 2013;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kondo Y, Iijima T, Noguchi M. Evaluation of immunohistochemical staining using whole-slide imaging for HER2 scoring of breast cancer in comparison with real glass slides. Pathol Int. 2012;62:592.

    Article  CAS  PubMed  Google Scholar 

  70. Camparo P, Egevad L, Algaba F, et al. Utility of whole slide imaging and virtual microscopy in prostate pathology. APMIS. 2012;120:298–304.

    Article  PubMed  Google Scholar 

  71. Feldman MD. Beyond morphology: whole slide imaging, computer-aided detection, and other techniques. Arch Pathol Lab Med. 2008;132:758–63.

    PubMed  Google Scholar 

  72. Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, Lazutka J. Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol. 2012;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alli PM, Ollayos CW, Thompson LD, Kapadia I, Butler DR, Williams BH, et al. Telecytology: intraobserver and interobserver reproducibility in the diagnosis of cervical-vaginal smears. Hum Pathol. 2001;32:1318–22.

    Article  CAS  PubMed  Google Scholar 

  74. Ziol M, Vacher-Lavenu MC, Heudes D, Ferrand J, Mayelo V, Molinié V, et al. Expert consultation for cervical carcinoma smears. Reliability of selected-field videomicroscopy. Anal Quant Cytol Histol. 1999;21:35–41.

    CAS  PubMed  Google Scholar 

  75. Georgoulakis J, Archondakis S, Panayiotides I, Anninos D, Skagias L, Stamataki M, et al. Study on the reproducibility of thyroid lesions telecytology diagnoses based upon digitized images. Diagn Cytopathol. 2011;39:495–9.

    Article  PubMed  Google Scholar 

  76. Marchevsky AM, Nelson V, Martin SE, Greaves TS, Raza AS, Zeineh J, et al. Telecytology of fine-needle aspiration biopsies of the pancreas: a study of well-differentiated adenocarcinoma and chronic pancreatitis with atypical epithelial repair changes. Diagn Cytopathol. 2003;28:147–52.

    Article  PubMed  Google Scholar 

  77. Ayatollahi H, Khoei A, Mohammadian N, Sadeghian MH, Azari JB, Ghaemi MR, et al. Telemedicine in diagnostic pleural cytology: a feasibility study between universities in Iran and the USA. J Telemed Telecare. 2007;13:363–8.

    Article  PubMed  Google Scholar 

  78. Mulford DK. Telepathology education: reaching out to cytopathology programs throughout the country. ASC Bull. 2006;43:25–30.

    Google Scholar 

  79. Gagnon M, Inhorn S, Hancock J, Keller B, Carpenter D, Merlin T, et al. Comparison of cytology proficiency testing: glass slides vs. virtual slides. Acta Cytol. 2004;48:788–94.

    Article  PubMed  Google Scholar 

  80. Eversole GM, Moriarty AT, Schwartz MR, Clayton AC, Souers R, Fatheree LA, et al. Practices of participants in the college of american pathologists interlaboratory comparison program in cervicovaginal cytology, 2006. Arch Pathol Lab Med. 2010;134:331–5.

    PubMed  Google Scholar 

  81. Chantziantoniou N, Mukherjee M, Donnelly AD, Pantanowitz L, Austin RM. Digital applications in cytopathology: problems, rationalizations, and alternative approaches. Acta Cytol. 2018;62(1):68–76.

    Article  PubMed  Google Scholar 

  82. Ellis M, Hayes DF, Lippman ME. Treatment of metastatic disease. In: Harris J, Lippman M, Morrow M, et al., editors. Diseases of the breast. 3rd ed. Philadelphia: Lippincott-Raven; 2004. p. 1101–59.

    Google Scholar 

  83. Sile CC, Perry DJ, Nam L. Small cell carcinocythemia. Arch Pathol Lab Med. 1999;123:426–8.

    CAS  PubMed  Google Scholar 

  84. Rodriguez-Salas N, Jimenez-Gordo AM, Gonzalez E, et al. Circulating cancer cells in peripheral blood: a case report. Acta Cytol. 2000;44:237–41.

    Article  CAS  PubMed  Google Scholar 

  85. Seronie-Vivien S, Mery E, Delord JP, et al. Carcinocythemia as the single extension of breast cancer: report of a case and review of the literature. Ann Oncol. 2001;12:101922.

    Article  Google Scholar 

  86. Racila E, Euhus D, Weiss AJ, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaforio JJ, Serrano MJ, Sanchez-Rovira P, et al. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts poor prognosis. Int J Cancer. 2003;107:984–90.

    Article  CAS  PubMed  Google Scholar 

  88. Guller U, Zajac P, Schnider A, et al. Disseminated single tumor cells as detected by real-time quantitative polymerase chain reaction represent a prognostic factor in patients undergoing surgery for colorectal cancer. Ann Surg. 2002;236:768–76.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Terstappen LW, Rao C, Gross S, Weiss AJ. Peripheral blood tumor cell load reflects the clinical activity of the disease in patients with carcinoma of the breast. Int J Oncol. 2000;17:573–8.

    CAS  PubMed  Google Scholar 

  90. Cristofanilli M, Hayes DF, Budd GT, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005;23:1420–30.

    Article  PubMed  Google Scholar 

  91. Hayes DF, Cristofanilli M, Budd GT, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006;12:4218–24.

    Article  CAS  PubMed  Google Scholar 

  92. Riethdorf S, Fritsche H, Muller V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res. 2007;13:920–8.

    Article  CAS  PubMed  Google Scholar 

  93. Budd GT, Cristofanilli M, Ellis MJ, et al. Circulating tumor cells versus imaging-predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006;12:6403–9.

    Article  CAS  PubMed  Google Scholar 

  94. Cristofanilli M, Mendelsohn J. Circulating tumor cells in breast cancer: advanced tools for “tailored” therapy? Proc Natl Acad Sci U S A. 2006;103:17073–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res. 2008;14:7004–10.

    Article  CAS  PubMed  Google Scholar 

  96. Roy-Chowdhuri S, Aisner DL, Allen TC, et al. Biomarker testing in lung carcinoma cytology specimens: a perspective from members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2016 Apr 15 [Epub ahead of print].

    Google Scholar 

  97. Knoepp SM, Roh MH. Ancillary techniques on direct-smear aspirate slides: a significant evolution for cytopathology techniques. Cancer Cytopathol. 2013;121:120–8.

    Article  CAS  PubMed  Google Scholar 

  98. Roh MH. The utilization of cytologic fine-needle aspirates of lung cancer for molecular diagnostic testing. J Pathol Transl Med. 2015;49:300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G. Challenges and opportunities of next-generation sequencing: a cytopathologist’s perspective. Cytopathology. 2015;26:271–83.

    Article  CAS  PubMed  Google Scholar 

  100. Roy-Chowdhuri S, Goswami RS, Chen H, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123:659–68.

    Article  CAS  PubMed  Google Scholar 

  101. Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: lessons learned from next-generation sequencing—the MD Anderson experience. Arch Pathol Lab Med. 2016;140:1191–9.

    Article  PubMed  Google Scholar 

  102. Dejmek A, Zendehrokh N, Tomaszewska M, Edsjo A. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality. Cancer Cytopathol. 2013;121:344–53.

    Article  CAS  PubMed  Google Scholar 

  103. Bellevicine C, Malapelle U, de Luca C, Iaccarino A, Troncone G. EGFR analysis: current evidence and future directions. Diagn Cytopathol. 2014;42:984–92.

    Article  PubMed  Google Scholar 

  104. Roy-Chowdhuri S, Ror S, Monaco SE, Routbort MJ, Pantanowitz L, et al. Big data from small samples: informatics of next-generation sequencing in cytopathology. Cancer Cytopathol. 2017;125(4):236–44.

    Article  PubMed  Google Scholar 

  105. Won-Tak C, Sanjay K. Immunohistochemistry in the diagnosis of hepatocellular carcinoma. Gastroenterol Clin N Am. 2017;46:311–25.

    Article  Google Scholar 

  106. Vrotsos E, Alexis J. Can SOX-10 or KBA.62 replace S100 protein in immunohistochemical evaluation of sentinel lymph nodes for metastatic melanoma? Appl Immunohistochem Mol Morphol. 2016;24:26–9.

    Article  CAS  PubMed  Google Scholar 

  107. Kallen ME, Kim Y, Yang L, Rao NP, Tirado CA. A cryptic t(11;14) translocation in mantle cell lymphoma highlights the importance of FISH. J Assoc Genet Technol. 2015;41:13–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, J., Gong, Y. (2020). Cytology Techniques. In: Xu, H., Qian, X., Wang, H. (eds) Practical Cytopathology . Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-24059-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24059-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24058-5

  • Online ISBN: 978-3-030-24059-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics