Skip to main content

A Deep Learning Framework for Heart Disease Classification in an IoTs-Based System

  • Chapter
  • First Online:
A Handbook of Internet of Things in Biomedical and Cyber Physical System

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 165))

Abstract

Accurate classification of heart diseases plays an important role and IoTs applied in a medical system will increase the effectiveness of diagnosis. In this chapter, we propose an IoTs-based diagnostic system for heart diseases classification. This system is designed to transmit classified data to server for storage and diagnosis. In particular, ECG devices are connected to internet systems through wifi or 3G/4G technologies for transmitting ECG data to a cloud-based processing system for storing patient’s profiles. Therefore, datasets are pre-processed for extracting features using a WPD algorithm. In addition, a wkPCA method and a deep learning framework are employed for classifying heart diseases. Experimental results and the IoTs-based system description are shown to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization, World Heart Day. https://www.who.int/cardiovascular_diseases/world-heart-day/en. Accessed 19 Apr 2019

  2. Hindia, M.N., Rahman, T.A., Ojukwu, H., Hanafi, E., Fattouh, A.: Enabling remote health-caring utilizing IoT concept over LTE-femtocell networks. PLoS ONE 11, 1–17 (2016). https://doi.org/10.1371/journal.pone.0155077

    Article  Google Scholar 

  3. Xu, Y., Luo, M., Li, T.E., Song, G.: ECG signal de-noising and baseline wander correction based on CEEMDAN and wavelet threshold. Sensors 17, 2754–2770 (2017). https://doi.org/10.3390/s17122754

    Article  Google Scholar 

  4. Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A.E.W., Clifford, G.D.: Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Trans. Bio-Med. Eng. 62, 2125–2134 (2015). https://doi.org/10.1109/tbme.2015.2402236

    Article  Google Scholar 

  5. Savalia, S., Emamian, V.: Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering 5, 1–12 (2018). https://doi.org/10.3390/bioengineering5020035

    Article  Google Scholar 

  6. Hamdi, S., Abdallah, A.B., Bedoui, M.H.: Real time QRS complex detection using DFA and regular grammar. BioMed. Eng. Online 16, 31–51 (2017). https://doi.org/10.1186/s12938-017-0322-2

    Article  Google Scholar 

  7. Kurl, S., Makikallio, T.H., Rautaharju, P., Kiviniemi, V., Laukkanen, J.A.: Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. AHA J. 125, 2588–2594 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.025577

    Article  Google Scholar 

  8. Xiang, Y., Lin, Z., Meng, J.: Automatic QRS complex detection using two-level convolutional neural network. Biomed. Eng. Online 17, 1–13 (2018). https://doi.org/10.1186/s12938-018-0441-4

    Article  Google Scholar 

  9. Tang, X., Shu, L.: Classification of electrocardiogram signals with RS and quantum networks neural. Int. J. Multimedia and Ubiquitous Eng. 9, 363–372 (2014). https://doi.org/10.14257/ijmue.2014.9.2.37

    Article  Google Scholar 

  10. Ka, A.K.: ECG beat classification using waveform similarity and RR intervals. J. Med. Biol. Eng. 32, 417–422 (2011). https://doi.org/10.5405/jmbe.905

    Article  Google Scholar 

  11. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017). https://doi.org/10.1109/ACCESS.2017.2775180

    Article  Google Scholar 

  12. Bhoomika, B.K., Murulidhara, K.N.: Secured smart healthcare monitoring system based on Iot. Int. J. Recent Innov. Trends in Comput. Commun. 3, 4958–4961 (2015). https://doi.org/10.17762/ijritcc2321-8169.1507122

  13. Salunke, P., Nerkar, R.: IoT driven healthcare system for remote monitoring of patients. Int. J. Mod. Trends in Sci. Technol. 3, 100–103 (2017). https://doi.org/10.3390/app7030260

    Article  Google Scholar 

  14. Riazul Islam, S.M., Kwak, D., Humaun Kabir, Md., Hossain, M., Kwak, K.S.: The Internet of things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015). https://doi.org/10.1109/ACCESS.2015.2437951

    Article  Google Scholar 

  15. Mora, H., Gil, D., Terol, R.M., AzorĂ­n, J., Szymanski, J.: An IoT-based computational framework for healthcare monitoring in mobile environments. Sensors 17 (2017). https://doi.org/10.3390/s17102302

    Article  Google Scholar 

  16. Azimi, I., Anzanpour, A., Rahmani, A.M., Pahikkala, T., Levorato, M., Liljeberg, P., Dutt, N.: HiCH: hierarchical fog-assisted computing architecture for healthcare IoT. ACM Trans. Embed. Comput. Syst. 16, 1–20 (2017). https://doi.org/10.1145/3126501

    Article  Google Scholar 

  17. Yang, Z., Zhou, Q., Lei, L., Zheng, K., Xiang, W.: An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 40, 286–297 (2016). https://doi.org/10.1007/s10916-016-0644-9

    Article  Google Scholar 

  18. Jain, S., Bajaj, V., Kumar, A.: Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising. IEEE J. Biomed. Health Inf. 22, 1133–1139 (2018). https://doi.org/10.1109/JBHI.2017.2753321

    Article  Google Scholar 

  19. Nguyen, M.-H., Tran, V.-H., Nguyen, T.-H., Nguyen, T.-N.: A deep learning framework for inter-patient ECG classification. IJCSNS Int. J. Comput. Sci. Netw. Secur. 19, 74–84 (2019)

    Google Scholar 

  20. Piskorowski, J.: Digital$Q$-varying notch IIR filter with transient suppression. IEEE Trans. Instrum. Meas. 59, 866–872 (2010). https://doi.org/10.1109/TIM.2009.2026605

    Article  Google Scholar 

  21. Qin, Q., Li, J., Zhang, L., Yue, Y., Liu, C.: Combining low-dimensional wavelet features and support vector machine for arrhythmia beat classification. Sci. Rep. 7, 6067–6079 (2017). https://doi.org/10.1038/s41598-017-06596-z

    Article  Google Scholar 

  22. Li, T., Zhou, M.: ECG classification using wavelet packet entropy and random forests. Entropy 18, 285–301 (2016). https://doi.org/10.3390/e18080285

    Article  Google Scholar 

  23. Mateoa, C., AntonioTalavera, J.: Short-time Fourier transform with the window size fixed in the frequency domain (STFT-FD): implementation. SoftwareX 8, 5–8 (2018). https://doi.org/10.1016/j.softx.2017.11.005

    Article  Google Scholar 

  24. Jin, L., Dong, J.: Ensemble deep learning for biomedical time series classification. Comput. Intell. Neurosci. 2016, 1–13 (2016). https://doi.org/10.1155/2016/6212684

    Article  Google Scholar 

  25. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63, 664–675 (2016). https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  26. Gacek, A.: Data structure-guided development of electrocardiographic signal characterization and classification. Artif. Intell. Med. 59, 197–204 (2013). https://doi.org/10.1016/j.artmed.2013.09.004

    Article  Google Scholar 

  27. Lin, C.-C., Yang, C.-M.: Heartbeat classification using normalized RR intervals and morphological features. Math. Probl. Eng. 2014, 1–11 (2014). https://doi.org/10.1155/2014/712474

    Article  Google Scholar 

  28. Martis, R.J., Rajendra Acharya, U., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013). https://doi.org/10.1016/j.bspc.2013.01.005

    Article  Google Scholar 

  29. Thanh-Nghia, N., Thanh-Hai, N., Manh-Hung, N.: Wavelet-based Kernel construction for cardiovascular disease classification. Adv. Electr. Electron. Eng. (In press) (2019)

    Google Scholar 

  30. Sharma, L.N., Dandapat, S., Mahanta, A.: Multichannel ECG data compression based on multiscale principal component analysis. IEEE Trans. Inf. Technol. Biomed.: A Publ. IEEE Eng. Med. Biol. Soc. 16, 730–736 (2012). https://doi.org/10.1109/titb.2012.2195322

    Article  Google Scholar 

  31. Garcia, G., Moreira, G., Menotti, D., Luz, E.: Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci. Rep. 7, 10543–10544 (2017). https://doi.org/10.1038/s41598-017-09837-3

    Article  Google Scholar 

  32. Li, H., Yuan, D., Ma, X., Cui, D., Cao, L.: Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011–41011 (2017). https://doi.org/10.1038/srep41011

  33. Li, P., Wang, Y., He, J., Wang, L., Tian, Y., Zhou, T., Li, T., Li, J.: High-performance personalized heartbeat classification model for long-term ECG signal. IEEE Trans. Biomed. Eng. 64, 78–86 (2017). https://doi.org/10.1109/TBME.2016.2539421

    Article  Google Scholar 

  34. Wang, Y., Zhu, Y.S., Thakor, N.V., Xu, Y.H.: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48, 989–995 (2001). https://doi.org/10.1109/10.942588

    Article  Google Scholar 

  35. Celik, N., Manivannan, N., Balachandran, W.: Evaluation of a behind-the-ear ECG device for smartphone based integrated multiple smart sensor system in health applications. Int. J. Adv. Comput. Sci. Appl. 7, 409–418 (2016). https://doi.org/10.14569/IJACSA.2016.070757

  36. Suave Lobodzinski, S., Laks, M.M.: New devices for very long-term ECG monitoring. Cardiol. J. 19, 210–214 (2012). https://doi.org/10.5603/CJ.2012.0039

    Article  Google Scholar 

  37. Miao, F., Cheng, Y., He, Y., He, Q., Li, Y.: A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 15, 11465–11484 (2015). https://doi.org/10.3390/s150511465

    Article  Google Scholar 

  38. Walsh, J.A., Topol, E.J., Steinhubl, S.R.: Novel wireless devices for cardiac monitoring. Circulation 130, 573–581 (2014). https://doi.org/10.1161/CIRCULATIONAHA.114.009024

    Article  Google Scholar 

  39. Safara, F., Doraisamy, S., Azman, A., Jantan, A., Abdullah Ramaiah, A.R.: Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput. Biol. Med. 43, 1407–1414 (2013). https://doi.org/10.1016/j.compbiomed.2013.06.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Ministry of Education and Training, Vietnam with Grand No. B2017.SPK.03 and the HCMC University of Technology and Education, Vietnam. In addition, we would like to thank you master students for supports during research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Hai Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, TH., Nguyen, TN., Nguyen, TT. (2020). A Deep Learning Framework for Heart Disease Classification in an IoTs-Based System. In: Balas, V., Solanki, V., Kumar, R., Ahad, M. (eds) A Handbook of Internet of Things in Biomedical and Cyber Physical System. Intelligent Systems Reference Library, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-030-23983-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23983-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23982-4

  • Online ISBN: 978-3-030-23983-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics