Skip to main content

Modeling the Compressor Component, Design and Off-Design

  • Chapter
  • First Online:
Gas Turbine Design, Components and System Design Integration
  • 1075 Accesses

Abstract

As mentioned in Chapter 1, the function of a compressor is to increase the total pressure of the working fluid. According to the conservation law of energy, this total pressure increase requires external energy input, which must be added to the system in the form of mechanical energy. The compressor rotor blades exert forces on the working medium thereby increasing its total pressure. Based on efficiency and performance requirements, three types of compressor designs are applied. These are axial flow compressors, radial or centrifugal compressors, and mixed flow compressors. Axial flow compressors are characterized by a negligible change of the radius along the streamlines in axial direction. As a result, the contribution of the circumferential kinetic energy difference \((U^{2}_{3}-U^{2}_{2})/2\) to the pressure buildup is marginal. In contrast, the above difference is substantial for a radial compressor stage, where it significantly contributes to increasing the total pressure as discussed in Chapter 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Lieblein, S., Schwenk, F., Broderick, R. L., Diffusions factor for estimating losses and limiting blade loadings in axial flow compressor blade elements, NACA RM E53D01 June 1953.

    Google Scholar 

  2. Lieblein, S., Review of high performance axial flow compressor blade element theory, NACA RME 53L22 April 1954.

    Google Scholar 

  3. Lieblein, S., Roudebush, W. H., Theoretical loss relations for low speed two dimensional cascade flow NACA Technical Note 3662 March 1956.

    Google Scholar 

  4. Lieblein, S., Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NACA RM E57A28 March 1957.

    Google Scholar 

  5. Lieblein, S., Loss and stall analysis of compressor cascades, ASME Journal of Basic Engineering. Sept. 1959.

    Google Scholar 

  6. NASA SP-36 NASA Report, 1965.

    Google Scholar 

  7. Miller, G. R., Hartmann, M. J., Experimental shock configuration and shock losses in a transonic compressor rotor at design point NACA RM E58A14b, June 1958.

    Google Scholar 

  8. Miller, G. R., Lewis, G. W., Hartman, M. J., Shock losses in transonic compressor blade rows ASME Journal for Engineering and Power July 1961, pp. 235–241.

    Article  Google Scholar 

  9. Schwenk, F. C., Lewis, G. W., Hartmann, M. J., A preliminary analysis of the magnitude of shock losses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  10. Gostelow, J. P., Krabacher, K. W., Smith, L. H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  11. Gostelow, J. P., Design performance evaluation of four transonic compressor rotors, ASME Journal for Engineering and Power, January 1971.

    Google Scholar 

  12. Seylor, D. R., Smith, L. H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR54581, GE R66fpd321P, 1967.

    Google Scholar 

  13. Seylor, D. R., Gostelow, J. P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR54582, GE R67fpd236,1967.

    Google Scholar 

  14. Gostelow, J. P., Krabacher, K. W., Single stage experimental evaluation of high Mach number compressor rotor blading, Part III, Performance of rotor 2E. NASA CR-54583, 1967.

    Google Scholar 

  15. Krabacher, K. W., Gostelow, J. P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part IV, Performance of Rotor 2D. NASA CR-54584, 1967.

    Google Scholar 

  16. Krabacher, K. W., Gostelow, J. P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part V, Performance of Rotor 2B. NASA CR-54585, 1967.

    Google Scholar 

  17. N. T., Keenan, M. J., Tramm, P. C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  18. Koch, C. C., Smith, L. H., Loss sources and magnitudes in axial-flow compressors, ASME Journal of Engineering and Power, January 5, Vol. 98, N0. 3, pp. 411–424, July 1976.

    Article  Google Scholar 

  19. Schobeiri, M. T., Verlustkorrelationen für transsonische Kompressoren, BBC-Studie, TN-78/20, 1987.

    Google Scholar 

  20. König, W. M., Hennecke, D. K., Fottner, L., Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I-A Model for Subsonic Flow, ASME Paper, No. 94-GT-335.

    Google Scholar 

  21. Schobeiri, M. T., 1998, "A New Shock Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades," \({\underline{\text{AIAA,}~\text{ Journal }~\text{ of }~\text{ Propulsion }~\text{ and }~\text{ Power }}}\), Vol. 14, No. 4, pp. 470–478.

    Google Scholar 

  22. Schobeiri, M. T., 1997, "Advanced Compressor Loss Correlations, Part I: Theoretical Aspects," \({\underline{\text{ International }~\text{ Journal }~\text{ of }~\text{ Rotating }~\text{ Machinery }}}\), 1997, Vol. 3, pp. 163–177.

    Google Scholar 

  23. Schobeiri, M. T., 1997, "Advanced Compressor Loss Correlations, Part II: Experimental Verifications," International Journal of Rotating Machinery, 1997, Vol. 3, pp. 179–187.

    Article  Google Scholar 

  24. Schobeiri, M. T, Attia, M. 2003, "Active Aerodynamic Control of Multi-stage Axial Compressor Instability and Surge by Dynamically Adjusting the Stator Blades," \({\underline{\text{ AIAA-Journal }~\text{ of }~\text{ Propulsion }~\text{ and }~\text{ Power }}}\), Vol. 19, No. 2, pp 312–317.

    Google Scholar 

  25. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, 1957.

    Google Scholar 

  26. Balzer, R. L., A method for predicting compressor cascade total pressure losses when the inletrelative Mach number is greater than unity, ASME Paper 70-GT57.

    Google Scholar 

  27. Swan, W. C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, 1961.

    Article  Google Scholar 

  28. Smith, L. H., Private communication with the author and the GE-Design Information Memorandum 1954: A Note on The NACA Diffusion Factor, 1995.

    Google Scholar 

  29. Seylor, D. R., Smith, L. H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR54581, GE R66fpd321P, 1967.

    Google Scholar 

  30. Seylor, D. R., Gostelow, J. P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR54582, GE R67fpd236, 1967.

    Google Scholar 

  31. N. T., Keenan, M. J., Tramm, P. C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  32. Sulam, D. H., Keenan, M. J., Flynn, J. T., 1970. Single stage evaluation of highly loaded high Mach number compressor stages. II Data and performance of a multi-circular arc rotor. NASA CR-72694 PWA

    Google Scholar 

  33. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades,Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  34. Balzer, R. L., A method for predicting compressor cascade total pressure losses when the inlet relative Mach number is greater than unity, ASME Paper 70-GT57.

    Google Scholar 

  35. Swan, W. C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  36. Schobeiri, M. T., 1998, "A New Shock Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades," \({\underline{\text{ AIAA, }~\text{ Journal }~\text{ of }~\text{ underline }~\text{ Propulsion }~\text{ and }~\text{ Power }}}\), Vol. 14, No. 4, pp. 470–478.

    Google Scholar 

  37. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  38. Grieb, H., Schill, G., Gumucio, R., 1975. A semi-empirical method for the determination of multistage axial compressor efficiency. ASME-Paper 75-GT-11.

    Google Scholar 

  39. Carter, A. D. S., 1948. Three-Dimensional flow theories for axial compressors and turbines, Proceedings of the Institution of Mechanical Engineers, Vol. 159, p. 255.

    Article  Google Scholar 

  40. Hirsch, Ch., 1978. Axial compressor performance prediction, survey of deviation and loss correlations AGARD PEP Working Group 12.

    Google Scholar 

  41. Swan, W. C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  42. Jansen, W., Moffat, W. C., 1967. The off-design analysis of axial flow compressors ASME, Journal of Eng for Power, pp. 453–462.

    Google Scholar 

  43. Davis, W. R., 1971. A computer program for the analysis and design of turbomachinery, Carleton University Report No. ME/A.

    Google Scholar 

  44. Dettmering, W., Grahl, K., 1971. Machzahleinflußauf Verdichter charakteristik, ZFW 19.

    Google Scholar 

  45. Fottner, L., 1979. Answer to questionnaire on compressor loss and deviation angle correlations, AGARD-PEP, 1979. Working Group 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard T. Schobeiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schobeiri, M.T. (2019). Modeling the Compressor Component, Design and Off-Design. In: Gas Turbine Design, Components and System Design Integration. Springer, Cham. https://doi.org/10.1007/978-3-030-23973-2_15

Download citation

Publish with us

Policies and ethics