Skip to main content

Patch Clustering for Representation of Histopathology Images

  • Conference paper
  • First Online:
Digital Pathology (ECDP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11435))

Included in the following conference series:

Abstract

Whole Slide Imaging (WSI) has become an important topic during the last decade. Even though significant progress in both medical image processing and computational resources has been achieved, there are still problems in WSI that need to be solved. A major challenge is the scan size. The dimensions of digitized tissue samples may exceed 100,000 by 100,000 pixels causing memory and efficiency obstacles for real-time processing. The main contribution of this work is representing a WSI by selecting a small number of patches for algorithmic processing (e.g., indexing and search). As a result, we reduced the search time and storage by various factors between (50%–90%), while losing only a few percentages in the patch retrieval accuracy. A self-organizing map (SOM) has been applied on local binary patterns (LBP) and deep features of the KimiaPath24 dataset in order to cluster patches that share the same characteristics. We used a Gaussian mixture model (GMM) to represent each class with a rather small (10%–50%) portion of patches. The results showed that LBP features can outperform deep features. By selecting only 50% of all patches after SOM clustering and GMM patch selection, we received 65% accuracy for retrieval of the best match, while the maximum accuracy (using all patches) was 69%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TissueScope LE scanner by Huron Digital Pathology.

  2. 2.

    http://kimia.uwaterloo.ca/kimia_lab_data_Path24.html.

References

  1. Adiga, U., Malladi, R., Fernandez-Gonzalez, R., de Solorzano, C.O.: High-throughput analysis of multispectral images of breast cancer tissue. IEEE Trans. Image Process. 15(8), 2259–2268 (2006)

    Article  Google Scholar 

  2. Aiad, H.A., Abdou, A.G., Bashandy, M.A., Said, A.N., Ezz-Elarab, S.S., Zahran, A.A.: Computerized nuclear morphometry in the diagnosis of thyroid lesions with predominant follicular pattern. Ecancermedicalscience 3, 146 (2009). can-3-146[PII]

    Google Scholar 

  3. Ali Sharif Razavian, Hossein Azizpour, J.S.S.C.: CNN features off-the-shelf: an astounding baseline for recognition (2014)

    Google Scholar 

  4. AlZubaidi, A.K., Sideseq, F.B., Faeq, A., Basil, M.: Computer aided diagnosis in digital pathology application: review and perspective approach in lung cancer classification. In: 2017 Annual Conference on New Trends in Information and Communications Technology Applications (NTICT), pp. 219–224. IEEE (2017)

    Google Scholar 

  5. Babaie, M., et al.: Classification and retrieval of digital pathology scans: a new dataset. In: CVMI Workshop@ CVPR (2017)

    Google Scholar 

  6. Babaie, M., Tizhoosh, H.R., Zhu, S., Shiri, M.: Retrieving similar X-ray images from big image data using Radon barcodes with single projections. arXiv preprint arXiv:1701.00449 (2017)

  7. Chan, S.H., Zickler, T.E., Lu, Y.M.: Demystifying symmetric smoothing filters. CoRR abs/1601.00088 (2016)

    Google Scholar 

  8. Cooper, L.A.D., et al.: Digital pathology: data-intensive frontier in medical imaging. Proc. IEEE 100(4), 991–1003 (2012)

    Article  Google Scholar 

  9. Garcia-Gasulla, D., et al.: On the behavior of convolutional nets for feature extraction. J. Artif. Intell. Res. 61, 563–592 (2017)

    Article  MathSciNet  Google Scholar 

  10. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  11. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  12. Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H.R., Nahavandi, S.: Parallel deep solutions for image retrieval from imbalanced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018)

    Article  Google Scholar 

  13. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Forsyth, D.A., Mundy, J.L., di Gesú, V., Cipolla, R. (eds.) Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  14. Lotz, J., et al.: Patch-based nonlinear image registration for gigapixel whole slide images. IEEE Trans. Biomed. Eng. 63(9), 1812–1819 (2016)

    Article  Google Scholar 

  15. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  16. Marshall, B.: A brief history of the discovery of Helicobacter pylori. In: Suzuki, H., Warren, R., Marshall, B. (eds.) Helicobacter pylori, pp. 3–15. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55705-0_1

    Chapter  Google Scholar 

  17. Moriya, T., et al.: Unsupervised pathology image segmentation using representation learning with spherical k-means. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 1058111. International Society for Optics and Photonics (2018)

    Google Scholar 

  18. Stathonikos, N., Veta, M., Huisman, A., van Diest, P.J.: Going fully digital: perspective of a Dutch academic pathology lab. J. Pathol. Inform. 4, 15 (2013)

    Article  Google Scholar 

  19. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  20. Onega, T., et al.: Digitized whole slides for breast pathology interpretation: current practices and perceptions. J. Dig. Imaging 27, 642–648 (2014)

    Article  Google Scholar 

  21. Pitiot, A., Bardinet, E., Thompson, P., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Med. Image Anal. 10, 465–83 (2006)

    Article  Google Scholar 

  22. Robboy, S.J., Altshuler, B.S., Chen, H.Y.: Retrieval in a computer-assisted pathology encoding and reporting system (CAPER). Am. J. Clin. Pathol. 75(5), 654–661 (2016)

    Article  Google Scholar 

  23. Roberts, N., et al.: Toward routine use of 3D histopathology as a research tool. Am. J. Pathol. 180(5), 1835–1842 (2012)

    Article  Google Scholar 

  24. Al-Janabi, S., Huisman, A., Jonges, G.N., ten Kate, F.J., Goldschmeding, R., van Diest, P.J.: Whole slide images for primary diagnostics of urinary system pathology: a feasibility study. J. Pathol. Inform. 3(4), 91–96 (2014)

    Google Scholar 

  25. Sridhar, A., Doyle, S., Madabhushi, A.: Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces. J. Pathol. Inform. 6(1), 41 (2015)

    Article  Google Scholar 

  26. Srinivas, U., Mousavi, H.S., Monga, V., Hattel, A., Jayarao, B.: Simultaneous sparsity model for histopathological image representation and classification. IEEE Trans. Med. Imaging 33(5), 1163–1179 (2014)

    Article  Google Scholar 

  27. Tizhoosh, H., Babaie, M.: Representing medical images with encoded local projections. IEEE Trans. Biomed. Eng. 65(10), 2267–2277 (2018)

    Article  Google Scholar 

  28. Topi, M., Timo, O., Matti, P., Maricor, S.: Robust texture classification by subsets of local binary patterns. In: 15th International Conference on Pattern Recognition, ICPR, vol. 3, pp. 935–938, September 2000

    Google Scholar 

  29. Yang, L., et al.: A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32, 30–44 (2010)

    Article  Google Scholar 

  30. Zhang, X., Liu, W., Dundar, M., Badve, S., Zhang, S.: Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34(2), 496–506 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Tizhoosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chenni, W., Herbi, H., Babaie, M., Tizhoosh, H.R. (2019). Patch Clustering for Representation of Histopathology Images. In: Reyes-Aldasoro, C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science(), vol 11435. Springer, Cham. https://doi.org/10.1007/978-3-030-23937-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23937-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23936-7

  • Online ISBN: 978-3-030-23937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics