Skip to main content

Phytolith Analysis from Coprolites of Pilauco

  • Chapter
  • First Online:

Part of the book series: The Latin American Studies Book Series ((LASBS))

Abstract

The analysis of microfossils such as phytoliths may provide strong evidence regarding the characteristics of the dominant vegetation in ancient landscapes. The phytolites recovered from the coprolites found at the Pilauco site were analyzed to identify what types of plants were consumed by the fauna that inhabited the site. Phytolith remains evidenced mainly the presence of C3 grasses from the Poaceae family, which is in accordance with previous pollen analysis at Pilauco. Two out of the four coprolite samples analyzed likely correspond to Equus (andium). This was concluded based on the similar phytolith morphology associated with C3 grasses that match the eating habit of the genus in the southern hemisphere as described in the literature, and the presence of parasites eggs specific to equines. The remaining samples showed that the coprolite producer had an herbivorous diet with parasites indicating likely a ruminant animal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abarzúa AM, Villagrán C, Moreno PI (2004) Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, Southern Chile (43ªS). Quat Res (Orlando) 62:49–59

    Article  Google Scholar 

  • Asevedo L, Winck GR, Mothé D, Avilla LS (2011) Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: stereomicrowear and tooth calculus analyses combined. Quat Int 30:1–11

    Google Scholar 

  • Blackman E (1969) Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Can J Bot 47:827–838

    Article  Google Scholar 

  • Blackman E, Perry DW (1968) Opaline silica deposition in rye (Cecale cereale L). Ann Bot (Lond) 32:199–206

    Article  Google Scholar 

  • Bowdery D (1989) Phytoliths analysis: introduction and applications. In: Beck W, Clarke A, Head L(eds) Plants in Australian Archaeology, St. Lucia: archaeology and material culture studies in anthropology. Tempus 1, pp 161–196

    Google Scholar 

  • Bozarth S (1987) Diagnostic opal phytoliths from rinds of selected Curcubita species. Am Antiq 52:607–615

    Article  Google Scholar 

  • Bremond L, Alexandre A, Matthew JW, Hély C, Williamson D, Schâfer P, Majule A, Guiot J (2008) Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Glob Planet Change 61:209–224

    Article  Google Scholar 

  • Carnelli A, Madella M, Theurillat JP, Ammann B (2002) Aluminium in the Opal silica reticule of phytoliths: a new tool in palaeoecological studies. Am J Bot 89(2):346–351

    Article  Google Scholar 

  • Carter JA, Lian BO (2000) Palaeoenvironmental reconstruction from the last interglacial using phytolith analysis, Southeastern North Island, New Zealand. J Quat Sci. 15:733–743

    Article  Google Scholar 

  • Commoner B, Zucker ML (1953) Cellular differentiation: an experimental approach. In: Loomes WE (ed) Growth and differentiation in plants. Ames, Iowa, pp 339–392

    Google Scholar 

  • Dorweiler JE, Doebley J (1997) Developmental analysis of teosinte glume architecture 1: a major locus in the evolution of maize (Poaceae). Am J Bot 84:1313–1322

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17

    Article  Google Scholar 

  • Ernst WOH, Vis RD, Piccoli F (1995) Silicon in developing nuts of the sedge Schoenus nigricans. J Plant Physiol 146:481–488

    Article  Google Scholar 

  • Erra G (2010) Asignación sistemática y paleocomunidades inferidas a partir del estudio fitolitico de sedimentos cuaternarios de Entre Ríos-Argentina, Boletin de la Sociedad Argentina de Botanica. 45:309–319

    Google Scholar 

  • Gajardo-Pichincura A (2011) Posibilidades del análisis de fitolitos en pequeños humedales del centro-sur Chile: El caso del humedal El Valle, Araucanía-Chile Dissertation, Universitat Rovira i Virgili

    Google Scholar 

  • Horrocks M, Irwin GJ (2003) Pollen, phytoliths and diatoms in prehistoric coprolites from Kohila, Bay of Plenty, New Zeland. J Archaeol Sci 30:13–20

    Article  Google Scholar 

  • Horrocks M, Jones MD, Beever RE, Sutton DG (2002) Analysis of plants microfossils in prehistoric coprolites from Harataonga Bay. Great Barrier Island, New Zeland. J R Soc N Z 32:617–628

    Article  Google Scholar 

  • Iriarte J (2003) Emergent cultural complexity in the wetlands of uruguay during the middle holocene. Dissertation, University of Kentucky

    Google Scholar 

  • Katz O, Lev-Yadun S, Bar P (2014) Do phytoliths play an antiherbivory role in Southwest Asian Asteraceae species and to what extent? Flora 209(7):349–358

    Article  Google Scholar 

  • Kealhofer L, Piperno DR (1998) Opal phytoliths in Southeast Asian flora. Smithsonian Contributions to Botany, No 88. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. J Plant Physiol 125:1198–1205

    Article  Google Scholar 

  • Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot (Lond) 96:253–260

    Article  Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • McFadden JB, Cerling TE, Harris J, Prado J (1999) Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of new world Pleistocene horse (Equus) teeth. Glob Ecol Biogeogr 8:137–149

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. Proc Natl Acad Sci USA 80(3):790–791

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL, Mc Naughton MM, Davis RH (1985) Silica as defense against herbivory and a growth promoter in Africans grasses. Ecology 66(2):528–535

    Article  Google Scholar 

  • Mulholland SC (1989) Phytoliths shape frequencies in North Dakota grasses: a comparison to general patterns. J Archaeol Sci 16:489–511

    Article  Google Scholar 

  • Mulholland SC (1993) A test of phytoliths analysis at Big Hidatasa, North Dakota. In: Pearsall M, Piperno DR (eds) Current research in phytoliths analysis: applications in archaeology and paleoecology, MASCA research papers in science and archaeology, vol 10. MASCA, The University Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia, pp 131–145

    Google Scholar 

  • Pearsall D (1989) Paleoethnobotany: a handbook of procedures. Academic Press, San Diego

    Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologist and paleoecologist. AltaMira Press, UK

    Google Scholar 

  • Piperno DR, Sues HD (2005) Dinosaurs dined on grass science 310:1126–1128

    Google Scholar 

  • Piperno DR, Holst L, Wessel-Beaver L, Andres TC (2002) Evidence for the control of phytoliths formation in Curcubita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc Natl Acad Sci USA 99:10923–10928

    Article  Google Scholar 

  • Power-Jones A (1992) Great expectations: a short historical review of European phytoliths systematics. In: Rapp G, Mulholland S (eds) Phytoliths systematics: emerging issues. Advances in archaeological and museum science 1. Plenum Press, New York, pp 15–35

    Google Scholar 

  • Prado JL, Sánchez B, Alberdi MT (2011) Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. BMC Ecol 11(1):15

    Article  Google Scholar 

  • Presad V, Stromberg CAE, Alimohammadian H, Sahni A (2005) Dinosaurs coprolites and the early evolution of grasses and grazers. Science 310:1177–1179

    Article  Google Scholar 

  • Rovner I (1971) Potential of opal phytoliths for use in paleoecological reconstruction. Quat Res (Orlando) 1(3):343–359

    Article  Google Scholar 

  • Runge F, Runge J (1997) Opal phytoliths in East African plants and soils. In: Pinilla A, Juan-Tresserras J, Machado MJ (eds) The state-of-the-art of phytoliths in soils and plants. Monografías del Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, Madrid, pp 71–81

    Google Scholar 

  • Sánchez B, Prado JL, Alberdi MT (2003) Paleodiet, ecology, and extinction of Pleistocene gomphotheres (Proboscidea) from Pampean Region (Argentina). Coloq Paleontol 1:617–625

    Google Scholar 

  • Solari ME (2007) Historia Ambiental Holocénica de la Región sur-austral de Chile (X–XII Región). Rev Austral Cienc Soc 13:79–92

    Article  Google Scholar 

  • Tomlinson PB (1961) Anatomy of monocotiyledons II: palmae. Oxford University Press, London

    Google Scholar 

  • Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp G, Mulholland S (eds) Phytolith systematics. Plenum Press, New York, pp 113–128

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Álvarez-Barra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez-Barra, V. (2020). Phytolith Analysis from Coprolites of Pilauco. In: Pino , M., Astorga, G. (eds) Pilauco: A Late Pleistocene Archaeo-paleontological Site. The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-23918-3_11

Download citation

Publish with us

Policies and ethics