Skip to main content

3D Bioprinting Technologies

  • Chapter
  • First Online:
3D Bioprinting in Medicine

Abstract

Bioprinting technology offers capabilities for the design and fabrication of biological and tissue structures. Some of the field’s products are already impacting human health. Research to increase the complexity and functionality of bioprinted structures through innovation in bioprinting hardware, techniques, and materials continues to expand, with the aim of ultimately producing patient-specific tissue constructs. This chapter offers an introduction to the field, first by considering the emergence of bioprinting in relationship to enabling technologies. Because of the intense interest and continuing growth of the bioprinting, specific terminology and potential points of confusion across academic publications are discussed. The three main classes, or modalities, of bioprinting technologies are covered—extrusion-based bioprinting, droplet-based bioprinting, and bioprinting achieved through directed application of energy, such as light, to a bioink. The strengths and weaknesses of these techniques are discussed next, to highlight the potential of varying approaches and to point to opportunities for advances. Finally, some recent advances in bioprinting that are addressing challenges that exist in the three modalities are introduced to highlight innovative approaches that have and will continue to advance the field beyond limitations in the processes used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 02 November 2019

    This book was inadvertently published without updating the corrections to chapter 1. The same has been updated in all renditions of the book.

References

  1. Kang H-W, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319

    Article  CAS  PubMed  Google Scholar 

  2. Ingber DE, Mow VC, Butler D et al (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12:3265–3283. https://doi.org/10.1089/ten.2006.12.3265

    Article  CAS  PubMed  Google Scholar 

  3. Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng B Rev 15:381–394. https://doi.org/10.1089/ten.teb.2008.0575

    Article  Google Scholar 

  4. Yin X, Mead BE, Safaee H et al (2016) Engineering stem cell organoids. Cell Stem Cell 18:25–38. https://doi.org/10.1016/j.stem.2015.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groll J, Boland T, Blunk T et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001. https://doi.org/10.1088/1758-5090/8/1/013001

    Article  CAS  PubMed  Google Scholar 

  6. Moroni L, Burdick JA, Highley C et al (2018) Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 3:21–37. https://doi.org/10.1038/s41578-018-0006-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viola J, Lal B, Grad O (2003) NSF: Abt report on “The Emergence of Tissue Engineering as a Research Field”. https://www.nsf.gov/pubs/2004/nsf0450/start.htm. Accessed 23 Feb 2019

  8. Su A, Al’Aref SJ (2018) Chapter 1—History of 3D printing. In: Al’Aref SJ, Mosadegh B, Dunham S, Min JK (eds) 3D printing applications in cardiovascular medicine. Academic, Boston, pp 1–10

    Google Scholar 

  9. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926. https://doi.org/10.1126/science.8493529

    Article  CAS  PubMed  Google Scholar 

  10. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100:59–74. https://doi.org/10.1002/jps.22257

    Article  CAS  PubMed  Google Scholar 

  11. Tam RY, Yockell-Lelièvre J, Smith LJ et al (2019) Rationally designed 3D hydrogels model invasive lung diseases enabling high-content drug screening. Adv Mater 31:1806214. https://doi.org/10.1002/adma.201806214

    Article  CAS  Google Scholar 

  12. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125. https://doi.org/10.1126/science.1247125

    Article  CAS  PubMed  Google Scholar 

  13. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470. https://doi.org/10.1038/nmat2441

    Article  CAS  PubMed  Google Scholar 

  14. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci 112:14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hunsberger J, Harrysson O, Shirwaiker R et al (2015) Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 4:130–135. https://doi.org/10.5966/sctm.2014-0254

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373

    Article  CAS  PubMed  Google Scholar 

  17. Klebe RJ, Thomas CA, Grant GM et al (1994) Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. J Tissue Cult Methods 16:189–192. https://doi.org/10.1007/BF01540648

    Article  Google Scholar 

  18. Cesarano J, Baer TA, Calvert P (1997) Recent developments in freeform fabrication of dense ceramics from slurry deposition. International Solid Freeform Fabrication Symposium, 25–32.

    Google Scholar 

  19. Cesarano J, Segalman R, Calvert P (1998) Robocasting provides moldless fabrication form slurry deposition. Ceram Ind 148:94

    Google Scholar 

  20. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134. https://doi.org/10.1364/OL.22.000132

    Article  CAS  PubMed  Google Scholar 

  21. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698. https://doi.org/10.1038/35089130

    Article  CAS  PubMed  Google Scholar 

  22. Ma PX, Elisseeff J (2005) Scaffolding in tissue engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  CAS  Google Scholar 

  24. Billiet T, Vandenhaute M, Schelfhout J et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041. https://doi.org/10.1016/j.biomaterials.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  25. Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18:5429–5437. https://doi.org/10.1021/la0257135

    Article  CAS  Google Scholar 

  26. Chrisey DB (2000) The power of direct writing. Science 289:879–881. https://doi.org/10.1126/science.289.5481.879

    Article  CAS  PubMed  Google Scholar 

  27. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39. https://doi.org/10.1016/S1369-7021(04)00344-X

    Article  CAS  Google Scholar 

  28. Wikipedia (2019) Robocasting. https://en.wikipedia.org/wiki/Robocasting

  29. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014. https://doi.org/10.1126/science.1069210

    Article  CAS  PubMed  Google Scholar 

  30. Wu BM, Borland SW, Giordano RA et al (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40:77–87. https://doi.org/10.1016/0168-3659(95)00173-5

    Article  CAS  Google Scholar 

  31. Giordano RA, Wu BM, Borland SW et al (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 8:63–75

    Article  CAS  PubMed  Google Scholar 

  32. Park A, Wu B, Griffith LG (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 9:89–110. https://doi.org/10.1163/156856298X00451

    Article  CAS  PubMed  Google Scholar 

  33. Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. International Solid Freeform Fabrication Symposium, 376-380.

    Google Scholar 

  34. Hutmacher DW, Schantz T, Zein I et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  35. Bhatia SN, Chen CS (1999) Tissue engineering at the micro-scale. Biomed Microdevices 2:131–144. https://doi.org/10.1023/A:1009949704750

    Article  Google Scholar 

  36. Bhatia SN, Balis UJ, Yarmush ML, Toner M (1998) Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J Biomater Sci Polym Ed 9:1137–1160. https://doi.org/10.1163/156856298X00695

    Article  CAS  PubMed  Google Scholar 

  37. Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428. https://doi.org/10.1126/science.276.5317.1425

    Article  CAS  PubMed  Google Scholar 

  38. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389. https://doi.org/10.1016/S0167-7799(99)01355-4

    Article  CAS  PubMed  Google Scholar 

  39. Wilson WC, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272A:491–496. https://doi.org/10.1002/ar.a.10057

    Article  Google Scholar 

  40. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271. https://doi.org/10.1038/nmat863

    Article  CAS  PubMed  Google Scholar 

  41. All3DP (2016) The official history of the RepRap project. In: All3DP. https://all3dp.com/history-of-the-reprap-project/. Accessed 23 Feb 2019

  42. Malone E, Lipson H (2007) Fab@Home: the personal desktop fabricator kit. Rapid Prototyp J 13:245–255. https://doi.org/10.1108/13552540710776197s

    Article  Google Scholar 

  43. Feinberg AW, Miller JS (2017) Progress in three-dimensional bioprinting. MRS Bull 42:557–562. https://doi.org/10.1557/mrs.2017.166

    Article  CAS  Google Scholar 

  44. Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47

    Article  CAS  PubMed  Google Scholar 

  45. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Eyckmans J, Chen CS (2017) Designer biomaterials for mechanobiology. Nat Mater 16:1164–1168. https://doi.org/10.1038/nmat5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1269

    Article  PubMed  Google Scholar 

  48. Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792. https://doi.org/10.1038/ncomms1792

    Article  CAS  PubMed  Google Scholar 

  49. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci 103:2480–2487. https://doi.org/10.1073/pnas.0507681102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Annabi N, Tamayol A, Uquillas JA et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124. https://doi.org/10.1002/adma.201303233

    Article  CAS  PubMed  Google Scholar 

  51. Albrecht DR, Underhill GH, Wassermann TB et al (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369–375. https://doi.org/10.1038/nmeth873

    Article  CAS  PubMed  Google Scholar 

  52. Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105:9522–9527. https://doi.org/10.1073/pnas.0801866105

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gartner ZJ, Bertozzi CR (2009) Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc Natl Acad Sci 106:4606–4610. https://doi.org/10.1073/pnas.0900717106

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319. https://doi.org/10.1039/B814285H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun W, Starly B, Darling A, Gomez C (2004) Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 39:49–58. https://doi.org/10.1042/BA20030109

    Article  CAS  PubMed  Google Scholar 

  56. Ang TH, Sultana FSA, Hutmacher DW et al (2002) Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C 20:35–42. https://doi.org/10.1016/S0928-4931(02)00010-3

    Article  Google Scholar 

  57. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Article  CAS  PubMed  Google Scholar 

  58. Boland T, Mironov V, Gutowska A et al (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272A:497–502. https://doi.org/10.1002/ar.a.10059

    Article  Google Scholar 

  59. Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marquez GJ, Renn MJ, Miller WD (2001) Aerosol-based direct-write of biological materials for biomedical applications. Mat Res Soc Symp Proc Arch 698:343–349. https://doi.org/10.1557/PROC-698-Q5.2.1

    Article  Google Scholar 

  61. Ringeisen BR, Kim H, Young HD et al (2001) Cell-by-cell construction of living tissue. Mat Res Soc Symp Proc Arch 698. https://doi.org/10.1557/PROC-698-Q5.1.1

  62. Ringeisen BR, Chrisey DB, Krizman DB et al (2002) Cell-by-cell construction of living tissue by ambient laser transfer. In: Second annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology. Proceedings (Cat. No.02EX578), pp 120–125

    Google Scholar 

  63. Kachurin AM, Stewart RL, Church KH et al (2001) Direct-write construction of tissue-engineered scaffolds. Mat Res Soc Symp Proc Arch 698:1–6. https://doi.org/10.1557/PROC-698-Q5.5.1

  64. Smith CM, Stone AL, Parkhill RL et al (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576. https://doi.org/10.1089/ten.2004.10.1566

    Article  CAS  PubMed  Google Scholar 

  65. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362. https://doi.org/10.1016/j.tibtech.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  66. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11:9–17. https://doi.org/10.1108/13552540510573347

    Article  Google Scholar 

  67. Cohen DL, Malone E, Lipson H, Bonassar LJ (2006) Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 12:1325–1335. https://doi.org/10.1089/ten.2006.12.1325

    Article  CAS  PubMed  Google Scholar 

  68. Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266. https://doi.org/10.1023/A:1020932105236

    Article  CAS  Google Scholar 

  69. Yu T, Chiellini F, Schmaljohan D et al (2002) Microfabrication of hydrogels for biomedical applications. In: Advances in resist technology and processing XIX. International Society for Optics and Photonics, pp 854–861

    Google Scholar 

  70. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10:1316–1322. https://doi.org/10.1089/ten.2004.10.1316

    Article  CAS  PubMed  Google Scholar 

  71. Tayalia P, Mendonca CR, Baldacchini T et al (2008) 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv Mater 20:4494–4498. https://doi.org/10.1002/adma.200801319

    Article  CAS  Google Scholar 

  72. Hahn MS, Miller JS, West JL (2006) Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 18:2679–2684. https://doi.org/10.1002/adma.200600647

    Article  CAS  Google Scholar 

  73. Lee S-H, Moon JJ, West JL (2008) Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29:2962–2968. https://doi.org/10.1016/j.biomaterials.2008.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xing J-F, Zheng M-L, Duan X-M (2015) Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 44:5031–5039. https://doi.org/10.1039/C5CS00278H

    Article  CAS  PubMed  Google Scholar 

  75. Guvendiren M, Burdick JA (2013) Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 24:841–846. https://doi.org/10.1016/j.copbio.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12:631–634. https://doi.org/10.1089/ten.2006.12.631

    Article  PubMed  Google Scholar 

  77. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926. https://doi.org/10.1126/science.1226340

    Article  CAS  PubMed  Google Scholar 

  78. Xu T, Kincaid H, Atala A, Yoo JJ (2008) High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng 130:021017. https://doi.org/10.1115/1.2903064

    Article  Google Scholar 

  79. Xu T, Olson J, Zhao W et al (2008) Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manuf Sci Eng 130:021013. https://doi.org/10.1115/1.2902857

    Article  Google Scholar 

  80. Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028. https://doi.org/10.1002/adma.201302042

    Article  CAS  PubMed  Google Scholar 

  81. Nakamura M, Iwanaga S, Henmi C et al (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2:014110. https://doi.org/10.1088/1758-5082/2/1/014110

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90. https://doi.org/10.1089/ten.2006.12.83

    Article  CAS  PubMed  Google Scholar 

  83. Jones N (2012) Science in three dimensions: the print revolution. Nature 487:22. https://doi.org/10.1038/487022a

    Article  CAS  PubMed  Google Scholar 

  84. Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23:5651–5657. https://doi.org/10.1002/adma.201103482

    Article  CAS  PubMed  Google Scholar 

  85. Dalton PD (2017) Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng 2:49–57. https://doi.org/10.1016/j.cobme.2017.05.007

    Article  Google Scholar 

  86. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11:1775–1781. https://doi.org/10.1038/nprot.2016.123

    Article  CAS  PubMed  Google Scholar 

  87. Groll J, Burdick JA, Cho D-W et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11:013001. https://doi.org/10.1088/1758-5090/aaec52

    Article  CAS  PubMed  Google Scholar 

  88. Bandyopadhyay A, Bose S, Das S (2015) 3D printing of biomaterials [refer to the sidebar by Hutmacher in print version of this article]. MRS Bull 40:108–115. https://doi.org/10.1557/mrs.2015.3

    Article  CAS  Google Scholar 

  89. Guillemot F, Mironov V, Nakamura M (2010) Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B\textquotesingle09). Biofabrication 2:010201. https://doi.org/10.1088/1758-5082/2/1/010201

    Article  PubMed  Google Scholar 

  90. Elbert DL (2011) Bottom-up tissue engineering. Curr Opin Biotechnol 22:674–680. https://doi.org/10.1016/j.copbio.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guven S, Chen P, Inci F et al (2015) Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol 33:269–279. https://doi.org/10.1016/j.tibtech.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guvendiren M, Molde J, Soares RM, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2:1679–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cox SC, Thornby JA, Gibbons GJ et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C 47:237–247. https://doi.org/10.1016/j.msec.2014.11.024

    Article  CAS  Google Scholar 

  94. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  95. Ferris CJ, Gilmore KJ, Beirne S et al (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224–230. https://doi.org/10.1039/C2BM00114D

    Article  CAS  PubMed  Google Scholar 

  96. Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3:701–704. https://doi.org/10.1517/14712598.3.5.701

    Article  PubMed  Google Scholar 

  97. Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161. https://doi.org/10.1016/S0167-7799(03)00033-7

    Article  CAS  PubMed  Google Scholar 

  98. Keriquel V, Guillemot F, Arnault I et al (2010) In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101. https://doi.org/10.1088/1758-5082/2/1/014101

    Article  CAS  PubMed  Google Scholar 

  99. Moroni L, Boland T, Burdick JA et al (2018) Biofabrication: a guide to technology and terminology. Trends Biotechnol 36:384–402. https://doi.org/10.1016/j.tibtech.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  100. Bücking TM, Hill ER, Robertson JL et al (2017) From medical imaging data to 3D printed anatomical models. PLoS One 12:e0178540. https://doi.org/10.1371/journal.pone.0178540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Leukers B, Gülkan H, Irsen SH et al (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124. https://doi.org/10.1007/s10856-005-4716-5

    Article  CAS  PubMed  Google Scholar 

  102. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  103. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462. https://doi.org/10.1126/science.1216210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929–931. https://doi.org/10.1364/OL.33.000929

    Article  PubMed  Google Scholar 

  105. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280. https://doi.org/10.1080/07853890701881788

    Article  CAS  PubMed  Google Scholar 

  106. Kinstlinger IS, Bastian A, Paulsen SJ et al (2016) Open-source selective laser sintering (OpenSLS) of nylon and biocompatible polycaprolactone. PLoS One 11:e0147399. https://doi.org/10.1371/journal.pone.0147399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Skardal A, Zhang J, McCoard L et al (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng A 16:2675–2685. https://doi.org/10.1089/ten.tea.2009.0798

    Article  CAS  Google Scholar 

  108. Boere KWM, Blokzijl MM, Visser J et al (2015) Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J Mater Chem B 3:9067–9078. https://doi.org/10.1039/C5TB01645B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rutz AL, Hyland KE, Jakus AE et al (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ouyang L, Highley CB, Rodell CB et al (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2:1743–1751

    Article  CAS  PubMed  Google Scholar 

  111. Highley CB, Song KH, Daly AC, Burdick JA (2019) Jammed microgel inks for 3D printing applications. Adv Sci 6:1801076. https://doi.org/10.1002/advs.201801076

    Article  CAS  Google Scholar 

  112. Bhattacharjee T, Zehnder SM, Rowe KG et al (2015) Writing in the granular gel medium. Sci Adv 1:e1500655

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hinton TJ, Jallerat Q, Palchesko RN et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1:e1500758

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hockaday LA, Kang KH, Colangelo NW et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005. https://doi.org/10.1088/1758-5082/4/3/035005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Phillippi JA, Miller E, Weiss L et al (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134. https://doi.org/10.1634/stemcells.2007-0520

    Article  CAS  PubMed  Google Scholar 

  116. Laronda MM, Rutz AL, Xiao S et al (2017) A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8:15261. https://doi.org/10.1038/ncomms15261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guvendiren M, Fung S, Kohn J et al (2017) The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture. MRS Commun 7:383–390. https://doi.org/10.1557/mrc.2017.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song KH, Highley CB, Rouff A, Burdick JA (2018) Complex 3D-printed microchannels within cell-degradable hydrogels. Adv Funct Mater 28:1801331. https://doi.org/10.1002/adfm.201801331

    Article  CAS  Google Scholar 

  119. Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 51:1–20. https://doi.org/10.1016/j.actbio.2017.01.035

    Article  CAS  PubMed  Google Scholar 

  120. Koike N, Fukumura D, Gralla O et al (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139. https://doi.org/10.1038/428138a

    Article  CAS  PubMed  Google Scholar 

  121. Cuchiara MP, Gould DJ, MK MH et al (2012) Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater 22:4511–4518. https://doi.org/10.1002/adfm.201200976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Campisi M, Shin Y, Osaki T et al (2018) 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–129. https://doi.org/10.1016/j.biomaterials.2018.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thilmany JA. Robot that prints tissue. https://www.asme.org/engineering-topics/articles/bioengineering/a-robot-that-prints-tissue. Accessed 16 Mar 2019

  124. Miller JS, Stevens KR, Yang MT et al (2012) Rapid casting of patterned vascular networks for perfusable engineered 3D tissues. Nat Mater 11:768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113:3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27:5075–5079

    Article  CAS  PubMed  Google Scholar 

  127. Daly AC, Pitacco P, Nulty J et al (2018) 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 162:34–46. https://doi.org/10.1016/j.biomaterials.2018.01.057

    Article  CAS  PubMed  Google Scholar 

  128. Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200. https://doi.org/10.1016/j.addma.2016.10.003

    Article  CAS  Google Scholar 

  129. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  CAS  PubMed  Google Scholar 

  130. Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 27:469–478. https://doi.org/10.1016/j.msec.2006.05.023

    Article  CAS  Google Scholar 

  131. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98B:160–170. https://doi.org/10.1002/jbm.b.31831

    Article  CAS  Google Scholar 

  132. Jakab K, Damon B, Neagu A et al (2006) Three-dimensional tissue constructs built by bioprinting. Biorheology 43:509–513

    PubMed  Google Scholar 

  133. Visser J, Peters B, Burger TJ et al (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:035007. https://doi.org/10.1088/1758-5082/5/3/035007

    Article  CAS  PubMed  Google Scholar 

  134. Xiong Z, Yan Y, Wang S et al (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46:771–776. https://doi.org/10.1016/S1359-6462(02)00071-4

    Article  CAS  Google Scholar 

  135. Vozzi G, Ahluwalia A (2007) Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem 17:1248–1254. https://doi.org/10.1039/B613511K

    Article  CAS  Google Scholar 

  136. Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001. https://doi.org/10.1088/1758-5082/2/2/022001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652. https://doi.org/10.1016/j.tibtech.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  138. Tan Z, Parisi C, Silvio LD et al (2017) Cryogenic 3D printing of super soft hydrogels. Sci Rep 7:16293. https://doi.org/10.1038/s41598-017-16668-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098. https://doi.org/10.1089/107632702320934182

    Article  CAS  PubMed  Google Scholar 

  140. Gratson GM, Xu M, Lewis JA (2004) Microperiodic structures: direct writing of three-dimensional webs. Nature 428:386. https://doi.org/10.1038/428386a

    Article  CAS  PubMed  Google Scholar 

  141. Gladman AS, Matsumoto EA, Nuzzo RG et al (2016) Biomimetic 4D printing. Nat Mater 15:413–418. https://doi.org/10.1038/nmat4544

    Article  CAS  PubMed  Google Scholar 

  142. Jakab K, Neagu A, Mironov V et al (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci 101:2864–2869. https://doi.org/10.1073/pnas.0400164101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marga F, Jakab K, Khatiwala C et al (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4:022001. https://doi.org/10.1088/1758-5082/4/2/022001

    Article  PubMed  Google Scholar 

  145. Yu Y, Moncal KK, Li J et al (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6:28714. https://doi.org/10.1038/srep28714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pfister A, Landers R, Laib A et al (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Part Polym Chem 42:624–638. https://doi.org/10.1002/pola.10807

    Article  CAS  Google Scholar 

  147. Jakab K, Norotte C, Damon B et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng A 14:413–421. https://doi.org/10.1089/tea.2007.0173

    Article  CAS  Google Scholar 

  148. Moldovan NI, Hibino N, Nakayama K (2016) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng B Rev 23:237–244. https://doi.org/10.1089/ten.teb.2016.0322

    Article  CAS  Google Scholar 

  149. Mao T, Kuhn DCS, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AICHE J 43:2169–2179. https://doi.org/10.1002/aic.690430903

    Article  CAS  Google Scholar 

  150. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414. https://doi.org/10.1146/annurev-matsci-070909-104502

    Article  CAS  Google Scholar 

  151. Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25:2629–2635. https://doi.org/10.1021/la900059m

    Article  CAS  PubMed  Google Scholar 

  152. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  153. Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem 18:5717–5721. https://doi.org/10.1039/B807560C

    Article  CAS  Google Scholar 

  154. Stringer J, Derby B (2009) Limits to feature size and resolution in ink jet printing. J Eur Ceram Soc 29:913–918. https://doi.org/10.1016/j.jeurceramsoc.2008.07.016

    Article  CAS  Google Scholar 

  155. van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343–345. https://doi.org/10.1002/adma.200701876

    Article  CAS  Google Scholar 

  156. Xu T, Jin J, Gregory C et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99. https://doi.org/10.1016/j.biomaterials.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  157. Xu T, Gregory CA, Molnar P et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588. https://doi.org/10.1016/j.biomaterials.2006.01.048

    Article  CAS  PubMed  Google Scholar 

  158. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106:963–969. https://doi.org/10.1002/bit.22762

    Article  CAS  PubMed  Google Scholar 

  159. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203. https://doi.org/10.1016/j.biomaterials.2007.09.032

    Article  CAS  PubMed  Google Scholar 

  160. Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109:3152–3160. https://doi.org/10.1002/bit.24591

    Article  CAS  PubMed  Google Scholar 

  161. Christensen K, Xu C, Chai W et al (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112:1047–1055. https://doi.org/10.1002/bit.25501

    Article  CAS  PubMed  Google Scholar 

  162. Xu T, Baicu C, Aho M et al (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1:035001. https://doi.org/10.1088/1758-5082/1/3/035001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7:1123–1127. https://doi.org/10.1517/14712598.7.8.1123

    Article  CAS  PubMed  Google Scholar 

  164. Long Ng W, Min Lee J, Yee Yeong W, Naing MW (2017) Microvalve-based bioprinting—process, bio-inks and applications. Biomater Sci 5:632–647. https://doi.org/10.1039/C6BM00861E

    Article  Google Scholar 

  165. Moon S, Hasan SK, Song YS et al (2009) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng C Methods 16:157–166. https://doi.org/10.1089/ten.tec.2009.0179

    Article  Google Scholar 

  166. Gruene M, Unger C, Koch L et al (2011) Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed Eng Online 10:19. https://doi.org/10.1186/1475-925X-10-19

    Article  PubMed  PubMed Central  Google Scholar 

  167. Elrod SA, Hadimioglu B, Khuri-Yakub BT et al (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65:3441–3447. https://doi.org/10.1063/1.342663

    Article  CAS  Google Scholar 

  168. Fang Y, Frampton JP, Raghavan S et al (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng C Methods 18:647–657. https://doi.org/10.1089/ten.tec.2011.0709

    Article  CAS  Google Scholar 

  169. Onses MS, Sutanto E, Ferreira PM et al (2015) Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11:4237–4266. https://doi.org/10.1002/smll.201500593

    Article  CAS  PubMed  Google Scholar 

  170. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595. https://doi.org/10.1016/j.biomaterials.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  171. Chahal D, Ahmadi A, Cheung KC (2012) Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng 109:2932–2940. https://doi.org/10.1002/bit.24562

    Article  CAS  PubMed  Google Scholar 

  172. Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7:1428–1433. https://doi.org/10.1039/B705809H

    Article  CAS  PubMed  Google Scholar 

  173. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145. https://doi.org/10.1039/B704965J

    Article  CAS  PubMed  Google Scholar 

  174. Demirci U (2006) Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J Microelectromech Syst 15:957–966. https://doi.org/10.1109/JMEMS.2006.878879

    Article  Google Scholar 

  175. Jayasinghe SN, Qureshi AN, Eagles PAM (2006) Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2:216–219. https://doi.org/10.1002/smll.200500291

    Article  CAS  PubMed  Google Scholar 

  176. Wade RJ, Burdick JA (2014) Advances in nanofibrous scaffolds for biomedical applications: from electrospinning to self-assembly. Nano Today 9:722–742. https://doi.org/10.1016/j.nantod.2014.10.002

    Article  CAS  Google Scholar 

  177. Gasperini L, Maniglio D, Motta A, Migliaresi C (2014) An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Eng C Methods 21:123–132. https://doi.org/10.1089/ten.tec.2014.0149

    Article  CAS  Google Scholar 

  178. Hayati I, Bailey AI, Tadros TF (1986) Mechanism of stable jet formation in electrohydrodynamic atomization. Nature 319:41. https://doi.org/10.1038/319041a0

    Article  Google Scholar 

  179. Eagles PAM, Qureshi AN, Jayasinghe SN (2006) Electrohydrodynamic jetting of mouse neuronal cells. Biochem J 394:375–378. https://doi.org/10.1042/BJ20051838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Workman VL, Tezera LB, Elkington PT, Jayasinghe SN (2014) Controlled generation of microspheres incorporating extracellular matrix fibrils for three-dimensional cell culture. Adv Funct Mater 24:2648–2657. https://doi.org/10.1002/adfm.201303891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xie J, Wang C-H (2007) Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci 312:247–255. https://doi.org/10.1016/j.jcis.2007.04.023

    Article  CAS  PubMed  Google Scholar 

  182. Poellmann MJ, Barton KL, Mishra S, Johnson AJW (2011) Patterned hydrogel substrates for cell culture with electrohydrodynamic jet printing. Macromol Biosci 11:1164–1168. https://doi.org/10.1002/mabi.201100004

    Article  CAS  PubMed  Google Scholar 

  183. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147. https://doi.org/10.1023/B:BMMD.0000031751.67267.9f

    Article  CAS  PubMed  Google Scholar 

  184. Koch L, Kuhn S, Sorg H et al (2009) Laser printing of skin cells and human stem cells. Tissue Eng C Methods 16:847–854. https://doi.org/10.1089/ten.tec.2009.0397

    Article  CAS  Google Scholar 

  185. Guillotin B, Souquet A, Catros S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256. https://doi.org/10.1016/j.biomaterials.2010.05.055

    Article  CAS  PubMed  Google Scholar 

  186. Barron JA, Ringeisen BR, Kim H et al (2004) Application of laser printing to mammalian cells. Thin Solid Films 453–454:383–387. https://doi.org/10.1016/j.tsf.2003.11.161

    Article  CAS  Google Scholar 

  187. Mézel C, Hallo L, Souquet A et al (2009) Self-consistent modeling of jet formation process in the nanosecond laser pulse regime. Phys Plasmas 16:123112. https://doi.org/10.1063/1.3276101

    Article  CAS  Google Scholar 

  188. Mézel C, Souquet A, Hallo L, Guillemot F (2010) Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2:014103. https://doi.org/10.1088/1758-5082/2/1/014103

    Article  PubMed  Google Scholar 

  189. Yap CY, Chua CK, Dong ZL et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2:041101. https://doi.org/10.1063/1.4935926

    Article  CAS  Google Scholar 

  190. Rombouts M, Kruth J, Froyen L et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36. https://doi.org/10.1108/13552540510573365

    Article  Google Scholar 

  191. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  192. Bückmann T, Stenger N, Kadic M et al (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714. https://doi.org/10.1002/adma.201200584

    Article  CAS  PubMed  Google Scholar 

  193. Lee S-J, Kang H-W, Park JK et al (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10:233–241. https://doi.org/10.1007/s10544-007-9129-4

    Article  CAS  PubMed  Google Scholar 

  194. Hribar KC, Soman P, Warner J et al (2014) Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14:268–275. https://doi.org/10.1039/C3LC50634G

    Article  CAS  PubMed  Google Scholar 

  195. Zhang AP, Qu X, Soman P et al (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24:4266–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators Phys 121:113–120. https://doi.org/10.1016/j.sna.2004.12.011

    Article  CAS  Google Scholar 

  197. Lu Y, Mapili G, Suhali G et al (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77A:396–405. https://doi.org/10.1002/jbm.a.30601

    Article  CAS  Google Scholar 

  198. Lim KS, Levato R, Costa PF et al (2018) Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10:034101. https://doi.org/10.1088/1758-5090/aac00c

    Article  CAS  PubMed  Google Scholar 

  199. Tumbleston JR, Shirvanyants D, Ermoshkin N et al (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397

    Article  CAS  PubMed  Google Scholar 

  200. Lin H, Zhang D, Alexander PG et al (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34:331–339. https://doi.org/10.1016/j.biomaterials.2012.09.048

    Article  CAS  PubMed  Google Scholar 

  201. Kim S, Qiu F, Kim S et al (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25:5863–5868. https://doi.org/10.1002/adma.201301484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Greiner AM, Klein F, Gudzenko T et al (2015) Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments. Biomaterials 69:121–132. https://doi.org/10.1016/j.biomaterials.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  203. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63. https://doi.org/10.1126/science.1169494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Arakawa CK, Badeau BA, Zheng Y, DeForest CA (2017) Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv Mater 29(37):1703156

    Article  Google Scholar 

  205. Brandenberg N, Lutolf MP (2016) In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv Mater 28:7450–7456

    Article  CAS  PubMed  Google Scholar 

  206. DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664. https://doi.org/10.1038/nmat2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhou X, Hou Y, Lin J (2015) A review on the processing accuracy of two-photon polymerization. AIP Adv 5:030701. https://doi.org/10.1063/1.4916886

    Article  CAS  Google Scholar 

  208. Xing J-F, Dong X-Z, Chen W-Q et al (2007) Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl Phys Lett 90:131106. https://doi.org/10.1063/1.2717532

    Article  CAS  Google Scholar 

  209. Fischer J, von Freymann G, Wegener M (2010) The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater 22:3578–3582. https://doi.org/10.1002/adma.201000892

    Article  CAS  PubMed  Google Scholar 

  210. Della Giustina G, Gandin A, Brigo L et al (2019) Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Mater Des 165:107566. https://doi.org/10.1016/j.matdes.2018.107566

    Article  CAS  Google Scholar 

  211. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20:314–322. https://doi.org/10.1016/j.mattod.2017.06.004

    Article  CAS  Google Scholar 

  212. Accardo A, Blatché M-C, Courson R et al (2018) Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. Biomed Phys Eng Exp 4:027009. https://doi.org/10.1088/2057-1976/aaab93

    Article  Google Scholar 

  213. Brigo L, Urciuolo A, Giulitti S et al (2017) 3D high-resolution two-photon crosslinked hydrogel structures for biological studies. Acta Biomater 55:373–384. https://doi.org/10.1016/j.actbio.2017.03.036

    Article  CAS  PubMed  Google Scholar 

  214. Schuurman W, Khristov V, Pot MW et al (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001. https://doi.org/10.1088/1758-5082/3/2/021001

    Article  CAS  PubMed  Google Scholar 

  215. Mekhileri NV, Lim KS, Brown GCJ et al (2018) Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10:024103. https://doi.org/10.1088/1758-5090/aa9ef1

    Article  CAS  PubMed  Google Scholar 

  216. Jungst T, Smolan W, Schacht K et al (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116:1496–1539. https://doi.org/10.1021/acs.chemrev.5b00303

    Article  CAS  PubMed  Google Scholar 

  217. Dubbin K, Hori Y, Lewis KK, Heilshorn SC (2016) Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater 5:2488–2492

    Article  CAS  PubMed  Google Scholar 

  218. Ouyang L, Highley CB, Sun W, Burdick JA (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29, 1604983

    Article  Google Scholar 

  219. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing. Tissue Eng A 14:41–48. https://doi.org/10.1089/ten.a.2007.0004

    Article  CAS  Google Scholar 

  220. Aguado BA, Mulyasasmita W, Su J et al (2011) Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng A 18:806–815. https://doi.org/10.1089/ten.tea.2011.0391

    Article  CAS  Google Scholar 

  221. Nair K, Gandhi M, Khalil S et al (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4:1168–1177. https://doi.org/10.1002/biot.200900004

    Article  CAS  PubMed  Google Scholar 

  222. Hölzl K, Lin S, Tytgat L et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  CAS  PubMed  Google Scholar 

  223. Colosi C, Shin SR, Manoharan V et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28:677–684

    Article  CAS  PubMed  Google Scholar 

  224. Miller JS (2014) The billion cell construct: will three-dimensional printing get us there? PLoS Biol 12:e1001882. https://doi.org/10.1371/journal.pbio.1001882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mendicino M, Bailey AM, Wonnacott K et al (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14:141–145. https://doi.org/10.1016/j.stem.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  226. Marklein RA, Lam J, Guvendiren M et al (2018) Functionally-relevant morphological profiling: a tool to assess cellular heterogeneity. Trends Biotechnol 36:105–118. https://doi.org/10.1016/j.tibtech.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  227. Simaria AS, Hassan S, Varadaraju H et al (2014) Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 111:69–83. https://doi.org/10.1002/bit.25008

    Article  CAS  PubMed  Google Scholar 

  228. Vacanti JP, Morse MA, Saltzman WM et al (1988) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23:3–9. https://doi.org/10.1016/S0022-3468(88)80529-3

    Article  CAS  PubMed  Google Scholar 

  229. Saunders RE, Derby B (2014) Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev 59:430–448. https://doi.org/10.1179/1743280414Y.0000000040

    Article  CAS  Google Scholar 

  230. Nakamura M, Kobayashi A, Takagi F et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666. https://doi.org/10.1089/ten.2005.11.1658

    Article  CAS  PubMed  Google Scholar 

  231. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nat Biotechnol 18:438–441. https://doi.org/10.1038/74507

    Article  CAS  PubMed  Google Scholar 

  232. Cui X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Blaeser A, Campos DFD, Puster U et al (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5:326–333. https://doi.org/10.1002/adhm.201500677

    Article  CAS  PubMed  Google Scholar 

  234. Morrison NF, Harlen OG (2010) Viscoelasticity in inkjet printing. Rheol Acta 49:619–632. https://doi.org/10.1007/s00397-009-0419-z

    Article  CAS  Google Scholar 

  235. Sun J, Ng JH, Fuh YH et al (2009) Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst Technol 15:1437–1448. https://doi.org/10.1007/s00542-009-0905-3

    Article  CAS  Google Scholar 

  236. Horváth L, Umehara Y, Jud C et al (2015) Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5:7974. https://doi.org/10.1038/srep07974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31:10–19. https://doi.org/10.1016/j.tibtech.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  238. Lee V, Singh G, Trasatti JP et al (2013) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng C Methods 20:473–484. https://doi.org/10.1089/ten.tec.2013.0335

    Article  CAS  Google Scholar 

  239. Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1:113–123. https://doi.org/10.15302/J-ENG-2015014

    Article  CAS  Google Scholar 

  240. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190. https://doi.org/10.1016/j.tibtech.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  241. Xiong R, Zhang Z, Chai W et al (2015) Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 7:045011. https://doi.org/10.1088/1758-5090/7/4/045011

    Article  PubMed  Google Scholar 

  242. Yan J, Huang Y, Chrisey DB (2012) Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 5:015002. https://doi.org/10.1088/1758-5082/5/1/015002

    Article  CAS  PubMed  Google Scholar 

  243. Guillemot F, Guillotin B, Fontaine A et al (2011) Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull 36:1015–1019. https://doi.org/10.1557/mrs.2011.272

    Article  CAS  Google Scholar 

  244. Kattamis NT, Purnick PE, Weiss R, Arnold CB (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91:171120. https://doi.org/10.1063/1.2799877

    Article  CAS  Google Scholar 

  245. Schiele NR, Corr DT, Huang Y et al (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001. https://doi.org/10.1088/1758-5082/2/3/032001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441. https://doi.org/10.1007/s10439-006-9156-y

    Article  PubMed  Google Scholar 

  247. Chan V, Zorlutuna P, Jeong JH et al (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070. https://doi.org/10.1039/C004285D

    Article  CAS  PubMed  Google Scholar 

  248. Jia J, Richards DJ, Pollard S et al (2014) Engineering alginate as bioink for bioprinting. Acta Biomater 10:4323–4331. https://doi.org/10.1016/j.actbio.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457. https://doi.org/10.1163/156856200743805

    Article  CAS  PubMed  Google Scholar 

  250. Williams CG, Malik AN, Kim TK et al (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218. https://doi.org/10.1016/j.biomaterials.2004.04.024

    Article  CAS  PubMed  Google Scholar 

  251. Fedorovich NE, Oudshoorn MH, van Geemen D et al (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353. https://doi.org/10.1016/j.biomaterials.2008.09.037

    Article  CAS  PubMed  Google Scholar 

  252. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30:6702–6707. https://doi.org/10.1016/j.biomaterials.2009.08.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ma X, Qu X, Zhu W et al (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci 113:2206–2211. https://doi.org/10.1073/pnas.1524510113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Miri AK, Nieto D, Iglesias L et al (2018) Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater 30:1800242. https://doi.org/10.1002/adma.201800242

    Article  CAS  Google Scholar 

  255. Bertlein S, Brown G, Lim KS et al (2017) Thiol–ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater 29:1703404. https://doi.org/10.1002/adma.201703404

    Article  CAS  Google Scholar 

  256. Sun AX, Lin H, Beck AM et al (2015) Projection stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front Bioeng Biotechnol 3:115. https://doi.org/10.3389/fbioe.2015.00115

    Article  PubMed  PubMed Central  Google Scholar 

  257. Cheung YK, Gillette BM, Zhong M et al (2007) Direct patterning of composite biocompatible microstructures using microfluidics. Lab Chip 7:574–579. https://doi.org/10.1039/B700869D

    Article  CAS  PubMed  Google Scholar 

  258. Ovsianikov A, Mühleder S, Torgersen J et al (2014) Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30:3787–3794. https://doi.org/10.1021/la402346z

    Article  CAS  PubMed  Google Scholar 

  259. Tromayer M, Dobos A, Gruber P et al (2018) A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells via two-photon polymerization. Polym Chem 9:3108–3117. https://doi.org/10.1039/C8PY00278A

    Article  CAS  Google Scholar 

  260. Van Hoorick J, Gruber P, Markovic M et al (2017) Cross-linkable gelatins with superior mechanical properties through carboxylic acid modification: increasing the two-photon polymerization potential. Biomacromolecules 18:3260–3272. https://doi.org/10.1021/acs.biomac.7b00905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ovsianikov A, Deiwick A, Van Vlierberghe S et al (2011) Laser fabrication of three-dimensional cad scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858. https://doi.org/10.1021/bm1015305

    Article  CAS  PubMed  Google Scholar 

  262. Stichler S, Böck T, Paxton N et al (2017) Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(-caprolactone) for MSC chondrogenesis. Biofabrication 9:044108. https://doi.org/10.1088/1758-5090/aa8cb7

    Article  CAS  PubMed  Google Scholar 

  263. Daly AC, Cunniffe GM, Sathy BN et al (2016) 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater 5:2353–2362. https://doi.org/10.1002/adhm.201600182

    Article  CAS  PubMed  Google Scholar 

  264. Melchels FPW, Blokzijl MM, Levato R et al (2016) Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication 8:035004. https://doi.org/10.1088/1758-5090/8/3/035004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ozbolat IT, Chen H, Yu Y (2014) Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 30:295–304. https://doi.org/10.1016/j.rcim.2013.10.005

    Article  Google Scholar 

  266. Daly AC, Kelly DJ (2019) Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197:194–206. https://doi.org/10.1016/j.biomaterials.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  267. Shanjani Y, Pan CC, Elomaa L, Yang Y (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7:045008. https://doi.org/10.1088/1758-5090/7/4/045008

    Article  CAS  PubMed  Google Scholar 

  268. Xu T, Binder KW, Albanna MZ et al (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001. https://doi.org/10.1088/1758-5082/5/1/015001

    Article  CAS  PubMed  Google Scholar 

  269. Ovsianikov A, Gruene M, Pflaum M et al (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104. https://doi.org/10.1088/1758-5082/2/1/014104

    Article  CAS  PubMed  Google Scholar 

  270. Bertlein S, Hikimoto D, Hochleitner G et al (2018) Development of endothelial cell networks in 3D tissues by combination of melt electrospinning writing with cell-accumulation technology. Small 14:1701521. https://doi.org/10.1002/smll.201701521

    Article  CAS  Google Scholar 

  271. Visser J, Melchels FPW, Jeon JE et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:6933. https://doi.org/10.1038/ncomms7933

    Article  CAS  PubMed  Google Scholar 

  272. Castilho M, Hochleitner G, Wilson W et al (2018) Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Sci Rep 8:1245. https://doi.org/10.1038/s41598-018-19502-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. O’Bryan CS, Bhattacharjee T, Niemi SR et al (2017) Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull 42:571–577. https://doi.org/10.1557/mrs.2017.167

    Article  CAS  Google Scholar 

  274. Shi L, Carstensen H, Hoelzl K et al (2017) Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem Mater 29(14):5816–5823

    Article  CAS  Google Scholar 

  275. Moxon SR, Cooke ME, Cox SC et al (2017) Suspended manufacture of biological structures. Adv Mater 29:1605594. https://doi.org/10.1002/adma.201605594

    Article  CAS  Google Scholar 

  276. Bhattacharjee T, Gil CJ, Marshall SL et al (2016) Liquid-like solids support cells in 3D. ACS Biomater Sci Eng 2:1787–1795. https://doi.org/10.1021/acsbiomaterials.6b00218

    Article  CAS  PubMed  Google Scholar 

  277. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Article  CAS  PubMed  Google Scholar 

  278. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. https://doi.org/10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  279. Bertassoni LE, Cecconi M, Manoharan V et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211. https://doi.org/10.1039/C4LC00030G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Lee VK, Kim DY, Ngo H et al (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102. https://doi.org/10.1016/j.biomaterials.2014.05.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Kim G, Ahn S, Kim Y et al (2011) Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21:6165–6172. https://doi.org/10.1039/C0JM03452E

    Article  CAS  Google Scholar 

  282. Zhang Y, Yu Y, Chen H, Ozbolat IT (2013) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 5:025004. https://doi.org/10.1088/1758-5082/5/2/025004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zhang Y, Yu Y, Akkouch A et al (2014) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3:134–143. https://doi.org/10.1039/C4BM00234B

    Article  PubMed Central  Google Scholar 

  284. Gao Q, He Y, Fu J et al (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215. https://doi.org/10.1016/j.biomaterials.2015.05.031

    Article  CAS  PubMed  Google Scholar 

  285. Jia W, Gungor-Ozkerim PS, Zhang YS et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hardin JO, Ober TJ, Valentine AD, Lewis JA (2015) Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater 27:3279–3284. https://doi.org/10.1002/adma.201500222

    Article  CAS  PubMed  Google Scholar 

  287. Foresti D, Kroll KT, Amissah R et al (2018) Acoustophoretic printing. Sci Adv 4:eaat1659. https://doi.org/10.1126/sciadv.aat1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Liu W, Zhang YS, Heinrich MA et al (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29:1604630. https://doi.org/10.1002/adma.201604630

    Article  CAS  Google Scholar 

  289. Ober TJ, Foresti D, Lewis JA (2015) Active mixing of complex fluids at the microscale. Proc Natl Acad Sci 112:12293–12298. https://doi.org/10.1073/pnas.1509224112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Graham AD, Olof SN, Burke MJ et al (2017) High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep 7(1):7004

    Article  PubMed  PubMed Central  Google Scholar 

  292. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129–136. https://doi.org/10.1002/bit.20585

    Article  CAS  PubMed  Google Scholar 

  293. Tsuda Y, Shimizu T, Yamato M et al (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946. https://doi.org/10.1016/j.biomaterials.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  294. Ong CS, Fukunishi T, Zhang H et al (2017) Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep 7:4566. https://doi.org/10.1038/s41598-017-05018-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Yamato M, Okano T (2004) Cell sheet engineering. Mater Today 7:42–47. https://doi.org/10.1016/S1369-7021(04)00234-2

    Article  CAS  Google Scholar 

  296. Hannachi IE, Yamato M, Okano T (2009) Cell sheet technology and cell patterning for biofabrication. Biofabrication 1:022002. https://doi.org/10.1088/1758-5082/1/2/022002

    Article  CAS  PubMed  Google Scholar 

  297. Bakirci E, Toprakhisar B, Zeybek M et al (2017) Cell sheet based bionk for 3D bioprinting applications. Biofabrication 9(2):024105

    Article  CAS  PubMed  Google Scholar 

  298. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510. https://doi.org/10.1002/adma.201101787

    Article  CAS  PubMed  Google Scholar 

  299. Todhunter ME, Jee NY, Hughes AJ et al (2015) Programmed synthesis of three-dimensional tissues. Nat Methods 12:975–981. https://doi.org/10.1038/nmeth.3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Blakely AM, Manning KL, Tripathi A, Morgan JR (2014) Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng C Methods 21:737–746. https://doi.org/10.1089/ten.tec.2014.0439

    Article  CAS  Google Scholar 

  301. Ovsianikov A, Khademhosseini A, Mironov V (2018) The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol 36:348–357. https://doi.org/10.1016/j.tibtech.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  302. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Huh D, Torisawa Y, Hamilton GA et al (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164. https://doi.org/10.1039/C2LC40089H

    Article  CAS  PubMed  Google Scholar 

  304. Nguyen DG, Funk J, Robbins JB et al (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11:e0158674. https://doi.org/10.1371/journal.pone.0158674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028–1042. https://doi.org/10.1242/dev.087643

    Article  CAS  PubMed  Google Scholar 

  306. Rossi G, Manfrin A, Lutolf MP (2018) Progress and potential in organoid research. Nat Rev Genet 19:671. https://doi.org/10.1038/s41576-018-0051-9

    Article  CAS  PubMed  Google Scholar 

  307. Kamei M, Brian Saunders W, Bayless KJ et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456. https://doi.org/10.1038/nature04923

    Article  CAS  PubMed  Google Scholar 

  308. Paşca SP (2019) Assembling human brain organoids. Science 363:126–127. https://doi.org/10.1126/science.aau5729

    Article  CAS  PubMed  Google Scholar 

  309. Binder KW, Zhao W, Aboushwareb T et al (2010) In situ bioprinting of the skin for burns. J Am Coll Surg 211:S76. https://doi.org/10.1016/j.jamcollsurg.2010.06.198

    Article  Google Scholar 

  310. Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802. https://doi.org/10.5966/sctm.2012-0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Roh K-H, Nerem RM, Roy K (2016) Biomanufacturing of therapeutic cells: state of the art, current challenges, and future perspectives. Annu Rev Chem Biomol Eng 7:455–478. https://doi.org/10.1146/annurev-chembioeng-080615-033559

    Article  CAS  PubMed  Google Scholar 

  312. Liaw C-Y, Guvendiren M (2017) Current and emerging applications of 3D printing in medicine. Biofabrication 9:024102. https://doi.org/10.1088/1758-5090/aa7279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Highley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Highley, C.B. (2019). 3D Bioprinting Technologies. In: Guvendiren, M. (eds) 3D Bioprinting in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-23906-0_1

Download citation

Publish with us

Policies and ethics