Skip to main content

A Frequentist Inference Method Based on Finite Bivariate and Multivariate Beta Mixture Models

  • Chapter
  • First Online:
Mixture Models and Applications

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

Modern technological improvement, revolutionized computers, progress in scientific methods, and other related factors led to generate a massive volume of structured and unstructured data. Such valuable data has potential to be mined for information retrieval and analyzed computationally to reveal patterns, trends, and associations that lead to better decisions and strategies. Thus, machine learning and specifically, unsupervised learning methods have become the topic of interest of much recent researches in data engineering. Finite mixture models as unsupervised learning methods, namely clustering, are considered as capable techniques for discovery, extraction, and analysis of knowledge from data. Traditionally Gaussian mixture model (GMM) has drawn lots of attention in previous literature and has been studied extensively. However, other distributions demonstrate more flexibility and convenience in modeling and describing data.

The novel aspect of this work is to develop a framework to learn mixture models based on bivariate and multivariate Beta distributions. Moreover, we tackle simultaneously the problems of parameters estimation, cluster validation, or model selection which are principal challenges in deployment of mixture models. The effectiveness, utility, and advantages of the proposed method are illustrated through extensive empirical results using real datasets and challenging applications involving image segmentation, sentiment analysis, credit approval, and medical inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diaz-Rozo, J., Bielza, C., Larrañaga, P.: Clustering of data streams with dynamic gaussian mixture models: an IoT application in industrial processes. IEEE Internet Things J. 5(5), 3533 (2018)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Olkin, I., Liu, R.: A bivariate beta distribution. Statist. Probab. Lett. 62(4), 407–412 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bouguila, N.: Clustering of count data using generalized Dirichlet multinomial distributions. IEEE Trans. Knowl. Data Eng. 20(4), 462–474 (2008)

    Article  Google Scholar 

  5. Bouguila, N., ElGuebaly, W.: Integrating spatial and color information in images using a statistical framework. Expert Syst. Appl. 37(2), 1542–1549 (2010)

    Article  Google Scholar 

  6. Bouguila, N., Ziou, D.: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans. Neural Netw. 21(1), 107–122 (2010)

    Article  Google Scholar 

  7. Bouguila, N.: Spatial color image databases summarization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 953–956 (2007)

    Google Scholar 

  8. Bouguila, N., Amayri, O.: A discrete mixture-based kernel for SVMs: application to spam and image categorization. Inf. Process. Manag. 45, 631–642 (2009)

    Article  Google Scholar 

  9. Bouguila, N., Ziou, D.: Dirichlet-based probability model applied to human skin detection [image skin detection]. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 521–524 (2004)

    Google Scholar 

  10. Bouguila, N., Ziou, D.: Improving content based image retrieval systems using finite multinomial Dirichlet mixture. In: 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, pp. 23–32 (2004)

    Google Scholar 

  11. Bouguila, N., Ziou, D.: A powerful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications. In: 17th International Conference on Pattern Recognition, pp. 280–283 (2004)

    Google Scholar 

  12. Bouguila, N., Ziou, D.: Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications. Pattern Recogn. Lett. 26(12), 1916–1925 (2005)

    Article  Google Scholar 

  13. Bouguila, N., Ziou, D.: A Dirichlet process mixture of Dirichlet distributions for classification and prediction. In: IEEE Workshop on Machine Learning for Signal Processing, pp. 297–302 (2008)

    Google Scholar 

  14. Bouguila, N., Ziou, D.: A countably infinite mixture model for clustering and feature selection. Knowl. Inf. Syst. 33(2), 351–370 (2012)

    Article  Google Scholar 

  15. Bouguila, N., Ziou, D., Hammoud, R.I.: On Bayesian analysis of a finite generalized Dirichlet mixture via a Metropolis-within-Gibbs sampling. Pattern. Anal. Applic. 12(2) (2009)

    Article  MathSciNet  Google Scholar 

  16. Olkin, I., Trikalinos, T.A.: Constructions for a bivariate beta distribution. Statist. Probab. Lett. 96, 54–60 (2015)

    Article  MathSciNet  Google Scholar 

  17. McLachlan, G.J.: Mixture models in statistics. In: International Encyclopedia of the Social and Behavioral Sciences, pp. 624–628 (2015)

    Chapter  Google Scholar 

  18. Ganesaligman, S.: Classification and mixture approaches to clustering via maximum likelihood. Appl. Stat. 38(3), 455–466 (1989)

    Article  MathSciNet  Google Scholar 

  19. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley-Interscience, Hoboken (2008)

    Book  Google Scholar 

  20. Bouguila, N., Ziou, D.: Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach. IEEE Trans. Knowl. Data Eng. 18(8), 993 (2006)

    Article  Google Scholar 

  21. Bouguila, N., Ziou, D.: On fitting finite Dirichlet mixture using ECM and MML. In: Third International Conference on Advances in Pattern Recognition, vol. 3686, pp. 172–182 (2005)

    Google Scholar 

  22. Bouguila, N., Ziou, D.: MML-based approach for finite Dirichlet mixture estimation and selection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 42–51 (2005)

    Google Scholar 

  23. Bouguila, N., Ziou, D.: Online clustering via finite mixtures of Dirichlet and minimum message length. Eng. Appl. Artif. Intell. 19, 371–379 (2006)

    Article  Google Scholar 

  24. Bouguila, N., Ziou, D.: Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach. IEEE Trans. Knowl. Data Eng. 18(8), 993–1009 (2006)

    Article  Google Scholar 

  25. Bouguila, N., Ziou, D.: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1716 (2007)

    Article  Google Scholar 

  26. Wallace, C.S., Dowe, D.L.: MML clustering of multistate, Poisson, von Mises circular and gaussian distributions. Stat. Comput. 10(1), 73–83 (2000)

    Article  Google Scholar 

  27. Baxter, R.A.: Minimum Message Length Inference: Theory and Applications. Monash University, Clayton (1996)

    Google Scholar 

  28. Baxter, R.A., Oliver, J.J.: Finding overlapping components with MML. Stat. Comput. 3(1), 5–16 (2000)

    Article  Google Scholar 

  29. Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 39(10), 8993–9001 (2012)

    Article  Google Scholar 

  30. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  31. Bouguila, N., Ziou, D.: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1716 (2007)

    Article  Google Scholar 

  32. Agusta, Y., Dowe, D.L.: Unsupervised learning of gamma mixture models using minimum message length. In: Hamza, M.H. (ed.) Proceeding Third ASTED Conference Artificial Intelligence and Applications, pp. 457–462 (2003)

    Google Scholar 

  33. Jefferys, W.H., Berger, J.O.: Ockham’s razor and Bayesian analysis. Am. Sci. 80(1), 64–72 (1992)

    Google Scholar 

  34. UCI Repository Data Set (1999). https://archive.ics.uci.edu/ml/machine-learningdatabases. Accessed 2 August 1999

  35. The Berkeley Segmentation Dataset and Benchmark Dataset [Online]. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  36. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  37. Strehl, A., Joydeep, G.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison. In: Proceedings of the 26th Annual International Conference on Machine Learning-ICML (2009)

    Google Scholar 

  39. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6 (2016)

    Google Scholar 

  41. Rosenberg, A., Hirschberg, J.: V-Measure a conditional entropy-based external cluster evaluation measure. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 410–420 (2007)

    Google Scholar 

  42. Becker, H.: Identification and Characterization of Events in Social Media. PhD Thesis (2011)

    Google Scholar 

  43. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  44. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Boston (2005)

    Google Scholar 

  45. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  46. Jaccard, P.: The Distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Manouchehri .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Eq.(9.12):

$$\displaystyle \begin{aligned} \mathcal{L} (\Theta,Z,\mathcal{X})&= \sum_{j=1}^{M} \sum_{n=1}^{N} \hat{Z}_{nj}\Big(\log p_j + \log p({\mathbf{X}}_n|{\mathbf{a}}_j)\Big)\\ &= \vspace{0.7cm} \sum_{j=1}^{M}\sum_{n=1}^{N}\ \hat{Z}_{nj}\Bigg(\log p_j + \log \Big(\frac{\prod_{i=1}^{d} X_{ni}^{(a_{ji}-1)}}{\prod_{i=1}^{d}(1-X_{ni})^{(a_{ji}+1)}} \\ &\quad \qquad \qquad \qquad \times \Big[ 1+\sum_{i=1}^{d}\frac{ X_{ni}}{(1-X_{ni})}\Big]^{-a_j} \times \frac{\Gamma(\sum_{i=1}^{d}a_{ji})}{\prod_{i=1}^{d} \Gamma(a_{ji})} \Big)\Bigg)\\&= \vspace{0.5cm} \sum_{j=1}^{M} \sum_{n=1}^{N} \hat{Z}_{nj} \Bigg( \log {p_j} + \log \Big( \prod_{i=1}^{d} X_{ni}^{(a_{ji}-1)} \Big) \\&\quad \qquad \qquad \qquad - \log \big( \prod_{i=1}^{d}(1-X_{ni})^{(a_{ji}+1)} \big) + \log \big( \Gamma(a_j) \big)\\&\quad \qquad \qquad \qquad \vspace{0.45cm} -\log\prod_{i=1}^{d} \Gamma(a_{ji})+\log\Big[ 1+\sum_{i=1}^{d}\frac{ X_{ni}}{(1-X_{ni})}\Big]^{-a_j} \Bigg)\\&= \vspace{0.45cm} \sum_{j=1}^{M}\sum_{n=1}^{N}\ \hat{Z}_{nj} \Bigg(\log p_j +\sum_{i=1}^{d} (a_{ji}-1)\big(\log(X_{ni})\big)\\&\quad \qquad \qquad \qquad - \vspace{0.15cm} \sum_{i=1}^{d}(a_{ji}+1)\big(\log(1-X_{ni})\big) \\ \vspace{0.45cm} &\quad \qquad \qquad \qquad +\log\big(\Gamma (a_{j})\big)- \sum_{i=1}^{d}\log\big( \Gamma(a_{ji})\big)\\&\quad \qquad \qquad \qquad -a_{j}\log\Big( \Big[ 1+\sum_{i=1}^{d}\frac{ X_{ni}}{(1-X_{ni})}\Big]\Big)\Bigg) \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manouchehri, N., Bouguila, N. (2020). A Frequentist Inference Method Based on Finite Bivariate and Multivariate Beta Mixture Models. In: Bouguila, N., Fan, W. (eds) Mixture Models and Applications. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-23876-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23876-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23875-9

  • Online ISBN: 978-3-030-23876-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics